www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - vollständige, bipartite Graph
vollständige, bipartite Graph < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige, bipartite Graph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Mi 29.11.2017
Autor: masa-ru

Aufgabe
1. Wie viele Kanten hat der vollständige Graph [mm] K_{n} [/mm] ?
2. Wie viele Kanten hat der vollständige bipartite Graph [mm] K_{m,n} [/mm] ?
3. Können alle Knoten eines schlichten Graphen unterschiedlichen Grad haben?

Hallo ich stehe wieder mal auf dem schlauch!
zu 1)
habe ich herausgefunden dass jeder Knoten mit jedem Anderen Knoten verbunden sein muss und in der wiki die Formel abgeschaut

[mm] \Delta_{n-1}=\vektor{n \\ 2} [/mm] = [mm] \bruch{n(n-1)}{2} [/mm]

kann das Stimmen?

zu 2)
ich komme hier mit meinem Wissen nicht weiter, ich weis das es zwei mengen von Knoten geben muss bei der sich die Knoten nicht in der Menge selbst mit Kanten verbunden sind.

[mm] K_{m,n} [/mm] m und n sind jeweils die Anzahl der Knoten der beiden Teilmengen.

kann einer auf die sprünge helfen ?

        
Bezug
vollständige, bipartite Graph: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Mi 29.11.2017
Autor: Al-Chwarizmi


> 1. Wie viele Kanten hat der vollständige Graph [mm]K_{n}[/mm] ?
>  2. Wie viele Kanten hat der vollständige bipartite Graph
> [mm]K_{m,n}[/mm] ?
>  3. Können alle Knoten eines schlichten Graphen
> unterschiedlichen Grad haben?
>  Hallo ich stehe wieder mal auf dem schlauch!
>  zu 1)
>  habe ich herausgefunden dass jeder Knoten mit jedem
> Anderen Knoten verbunden sein muss und in der wiki die
> Formel abgeschaut
>  
> [mm]\Delta_{n-1}=\vektor{n \\ 2}[/mm] = [mm]\bruch{n(n-1)}{2}[/mm]
>  
> kann das Stimmen?
>  
> zu 2)
>  ich komme hier mit meinem Wissen nicht weiter, ich weis
> das es zwei mengen von Knoten geben muss bei der sich die
> Knoten nicht in der Menge selbst mit Kanten verbunden
> sind.
>  
> [mm]K_{m,n}[/mm] m und n sind jeweils die Anzahl der Knoten der
> beiden Teilmengen.
>  
> kann einer auf die sprünge helfen ?


Hallo masa-ru

Deine Lösung zu Aufgabe (1.) ist richtig.

(2.)  Im vollständigen bipartiten Graph  $ [mm] K_{m,n} [/mm] $  muss es von
jedem der m Punkte der einen Menge genau eine Kante zu
jedem der n Punkte der zweiten Menge geben, und keine
weiteren Kanten. Das muss genügen, um die Gesamtzahl der
Kanten zu ermitteln.

(3.)   Da muss man sich zuerst die Definition des Begriffs
"schlichter Graph" klar machen. Es handelt sich dabei um
einen ungerichteten Graph ohne Schlingen und ohne
Mehrfachkanten. Zwischen zwei verschiedenen Knoten
gibt es in einem schlichten Graph entweder keine oder
eine einzige Kante. Zudem darf keine Kante einen Punkt
mit sich selber verbinden. Der "Grad" eines Knotens ist
die Anzahl der von ihm ausgehenden Kanten.

Die Antwort auf die gestellte Frage kenne ich (noch) nicht,
ich kann aber sagen, wie ich nun vorgehen würde:
1.)  Zuerst mal einige schlichte Graphen skizzieren und
bei jedem Knoten den Grad anschreiben.
2.)  Noch ein paar weitere Graphen skizzieren und darauf
achten, bei den Knoten unterschiedliche Grade zu erzeugen.
3.)  Gleichung(en) aufstellen, welche die Eckenzahl,
die Kantenzahl und die Grade der Knoten enthalten.
4.)  Nach Schlüssen suchen.

LG ,   Al-Chwarizmi

  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de