www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - partialbruchzerlegung
partialbruchzerlegung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Sa 08.11.2008
Autor: noobo2

hallo,
ich soll mit partialbruchzerlegung das folgende integral bestimmen
[mm] \integral_{}^{}{ \bruch{x^2-x}{x^2-10x+25} dx} [/mm]

im nenner steht nun der zweite binom und da ist eiegtnlciha uch das problem. Eine Polynomdivison macht in diesem fall auch keinen sinn. Also hab ich normal angefangen mti dem ansatz

also
[mm] \bruch{x^2-x}{x-5)*(x-5)} [/mm] = [mm] \bruch{a}{x-5} [/mm] + [mm] \bruch{b}{x-5} [/mm]
hab dann mit dem Hauptnenner multipliziert also mit (x-5)*(x-5) , da sosnt ja auf der linkens eite bei dem [mm] x^2-x [/mm] noch was stehen bleiebn würde , anchher beim koefizientenvergleich kommt logischerweise raus dass x(A+B) , dass A+B = (x-1) sein müssen, aber in der abshclusszeile kürzt sich bei mri das A , was ja auch logishc ist raus
[mm] x^2-x= -A5+5x+5+A5+x^2-x [/mm]
hat jemand ne idee?

        
Bezug
partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Sa 08.11.2008
Autor: vivo


> hallo,
>  ich soll mit partialbruchzerlegung das folgende integral
> bestimmen
>  [mm]\integral_{}^{}{ \bruch{x^2-x}{x^2-10x+25} dx}[/mm]

hallo,

du musst erst eine polynomdivision durchführen um das quadrat im Zähler zu beseitigen ...

das führt auf:

[mm] \bruch{x^2-x}{x^2-10x+25} [/mm] = 1 + [mm] \bruch{9x-25}{(x-5)^2} [/mm]

jetzt erst die Partialbruchzerlegung, für einen Faktor der mehrfach vorkommt also in diesem Fall zweimal brauchst du folgenden Ansatz:

[mm] \bruch{9x-25}{(x-5)^2} [/mm]
= [mm] \bruch{A}{(x-5)} [/mm] + [mm] \bruch{B}{(x-5)^2} [/mm]

wenn du dass jetzt mit dem Nenner durchmultiplizierst, findest du die Koeffizienten A und B und dann kannst ja integrieren

gruß

Bezug
                
Bezug
partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Sa 08.11.2008
Autor: noobo2

hallo,
weshalb denn
[mm] \bruch{B}{(x-5)^2}?? [/mm] dann ergibt der bruch asu a udn b doch nicht mehr das ursprüngliche

Bezug
                        
Bezug
partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Sa 08.11.2008
Autor: Denny22

Hallo,

> hallo,
> weshalb denn
> [mm]\bruch{B}{(x-5)^2}??[/mm] dann ergibt der bruch asu a udn b doch
> nicht mehr das ursprüngliche

Doch das tut es, siehe mal hier:

[]http://de.wikipedia.org/wiki/Partialbruchzerlegung

Dort wird es im Beispiel 2 mit einer doppelten Nullstelle bei 1 gezeigt.

Gruß Denny


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de