www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - mehrdim. W-keit Funktionen
mehrdim. W-keit Funktionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrdim. W-keit Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:41 Mo 22.06.2020
Autor: inkeddude

Aufgabe
Sei [mm] $\alpha \in [/mm] (0, [mm] \infty)$ [/mm]  und sei $(X, Y)$ eine [mm] $\mathb{R}^{2}$ [/mm] - wertige Zufallsvariable mit (gemeinsamer) Dichte $f: [mm] \mathbb{R}^{2} \rightarrow [/mm] [0, [mm] \infty)$ [/mm] definiert durch

$f(x, y) := [mm] \begin{cases} \alpha^{2} e^{- \alpha y} & \text{falls}; 0 \le x \le y \\ 0 & \text{sonst} \\ \end{cases} [/mm] $

a) bestimme eine Dichte [mm] $f_{X}$ [/mm] von $X$ und eine Dichte [mm] $f_{Y}$ [/mm] von $Y$.

b) Bestimme $E(X)$, $Var(X)$, $E(Y)$ und $Var(Y)$.

c) Bestimme $Cov(X, Y)$ und den Korrelationskoeffizient [mm] $\varrho(X, [/mm] Y)$.
    Sind $X$ und $Y$ positiv korreliert ? Hängt [mm] $\varrho(X, [/mm] Y)$ von [mm] $\alpha$ [/mm] ab ?

Hinweis: $E(XY) = [mm] \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}xy [/mm] f(x, y) dx dy$

Moin!

Ich habe Schwierigkeiten, die obige Aufgabe zu lösen, da ich noch mit mehrdimensionalen Wahrscheinlichkeitsfunktionen warm werden muss...

Da ich keine nützlichen Abschnitte oder Sätze im Skript finde oder sehe, habe ich leider keinen vernünftigen Ansatz, um zumindest die a) zu lösen.

Kann mir jemand netterweise ein paar Tipps zu a) geben ? Dann kann ich hoffentlich damit was anfangen.

Bedanke mich im Voraus!

        
Bezug
mehrdim. W-keit Funktionen: Zu a)
Status: (Antwort) fertig Status 
Datum: 14:12 Mo 22.06.2020
Autor: Infinit

Hallo inkeddude,
was Du da hast, ist doch eine Definition einer zweidimensionalen Wahrscheinlichkeitsdichte, die fast überall gleich Null ist, aber sie ist ungleich Null oberhalb der Winkelhalbierenden im ersten Quadranten.
Die Randdichten nach denen nun gefragt ist, bekommt man auf relativ einfache Art und Weise und zwar, indem man die zweidimensionale Dichte für die Randdichte [mm] f_x [/mm] über y integriert und für die Randdichte [mm] f_y [/mm]  über x.
[mm] f_x (x) = \int_0^{\infty} f(x,y) \, dy [/mm] und entsprechend
[mm] f_y (y) = \int_0^{\infty} f(x,y) \, dx [/mm]
Viel Spaß beim Rechnen wünscht
Infinit


Bezug
        
Bezug
mehrdim. W-keit Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Di 23.06.2020
Autor: luis52

Moin, schau mal hier, ab Seite 153.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de