www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - irreduzibilität zeigen
irreduzibilität zeigen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzibilität zeigen: tipp
Status: (Frage) beantwortet Status 
Datum: 20:03 Di 07.12.2010
Autor: sepp-sepp

Aufgabe
zeigen Sie: f irreduzibel über [mm] \IQ[X]: [/mm]
[mm] f(x)=X^{4}-3X^{3}+3X^{2}-X+1 [/mm]


habe mir, da eisenstein denk ich nicht hilft, überlegt das reduktionskriterium über [mm] \IZ/3\IZ [/mm] anzuwenden und erhalte [mm] f(X)=X^{4}+2X+1. [/mm]
Nun wäre meine Frage zunächst, ob ich über [mm] \IZ/3\IZ [/mm] sagen kann [mm] X^{4}=X^{2}, [/mm] da ja [mm] 1^{4}=1, 2^{4}=2^{2}=1, 3^{4}=0. [/mm]
angenommen, dies stimmt, erhalte ich  [mm] f(X)=X^{2}+2X+1, [/mm] und sehe, dass f eine Nullstelle bei 2 hat, was aber eig. nicht sein sollte. wo ist das problem?stimmt das oder ist ein haken dran?

        
Bezug
irreduzibilität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 07.12.2010
Autor: schachuzipus

Hallo sepp-sepp,


> zeigen Sie: f irreduzibel über [mm]\IQ[X]:[/mm]
>  [mm]f(x)=X^{4}-3X^{3}+3X^{2}-X+1[/mm]
>  
> habe mir, da eisenstein denk ich nicht hilft, überlegt das
> reduktionskriterium über [mm]\IZ/3\IZ[/mm] anzuwenden und erhalte
> [mm]f(X)=X^{4}+2X+1.[/mm] [ok]
>  Nun wäre meine Frage zunächst, ob ich über [mm]\IZ/3\IZ[/mm]
> sagen kann [mm]X^{4}=X^{2},[/mm] da ja [mm]1^{4}=1, 2^{4}=2^{2}=1, 3^{4}=0.[/mm]

Hmm, hmm, da bin ich nicht sicher ...

>  
> angenommen, dies stimmt, erhalte ich  [mm]f(X)=X^{2}+2X+1,[/mm] und
> sehe, dass f eine Nullstelle bei 2 hat,

Es ist 2 (modulo 3) auch Nullstelle des eingangs berechneten reduzierten Polynoms [mm]X^4+2X+1[/mm]

Damit erübrigt sich die Frage nach dem [mm]X^4 --> X^2[/mm] auch ;-)

> was aber eig. nicht
> sein sollte. wo ist das problem?

Die Reduktion bringt nix.

Ich meine, auf die Schnelle zu "sehen", dass eine Reduktion modulo 2 besser hinhaut ...


> stimmt das oder ist ein
> haken dran?


Gruß

schachuzipus



Bezug
                
Bezug
irreduzibilität zeigen: rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:47 Di 07.12.2010
Autor: sepp-sepp

ja, danke schon mal. das habe ich gemacht und erhalte mit red. mod 2 das folgende normierte polynom [mm] f(X)=X^{4}+X^{3}+X^{2}+X+1 [/mm]
sieht schon mal gut aus, jedoch fehlt mir jetzt noch der entscheidende argumentationsschritt. woraus kann ich denn jetzt auf irreduzibel schließen?nullstellen denk ich hat das ding nicht, aber das würde eh nur bis grad 3 nützen:(

Bezug
                        
Bezug
irreduzibilität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Di 07.12.2010
Autor: Lippel

Hallo,

> ja, danke schon mal. das habe ich gemacht und erhalte mit
> red. mod 2 das folgende normierte polynom
> [mm]f(X)=X^{4}+X^{3}+X^{2}+X+1[/mm]
> sieht schon mal gut aus, jedoch fehlt mir jetzt noch der
> entscheidende argumentationsschritt. woraus kann ich denn
> jetzt auf irreduzibel schließen?nullstellen denk ich hat
> das ding nicht, aber das würde eh nur bis grad 3 nützen:(

Da du schon weißt, dass das Polynom keine Nullstelle hat, kann es keinen Teiler mit Grad 1 geben, d.h. falls es $g,h [mm] \in \IF_2[X]$ [/mm] gibt, sodass $f=gh$, so müssen g und h vom Grad 2 sein und jeweils selbst irreduzibel, sonst läge weider eine Nullstelle vor. Das sollte dir schon weiter helfen, es gibt nämlich nicht sehr viele irred. Polynome vom Grad 2 in [mm] $\IF_2[X]$. [/mm]

Viele Grüße, Lippel

Bezug
                
Bezug
irreduzibilität zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:48 Di 07.12.2010
Autor: felixf

Moin!

> > habe mir, da eisenstein denk ich nicht hilft, überlegt das
> > reduktionskriterium über [mm]\IZ/3\IZ[/mm] anzuwenden und erhalte
> > [mm]f(X)=X^{4}+2X+1.[/mm] [ok]
>  >  Nun wäre meine Frage zunächst, ob ich über [mm]\IZ/3\IZ[/mm]
> > sagen kann [mm]X^{4}=X^{2},[/mm] da ja [mm]1^{4}=1, 2^{4}=2^{2}=1, 3^{4}=0.[/mm]
>  
> Hmm, hmm, da bin ich nicht sicher ...

Zum Nullstellen-Testen ist das ok (wenn auch ziemlich ueberfluessig), da man dort nur die Polynomfunktion betrachtet. Das Polynom selber aber so zu aendern ist schlichtweg falsch.

Beispielsweise gilt ueber [mm] $\IF_2$, [/mm] dass [mm] $X^2 [/mm] = X$ ist als Polynomfunktion. Trotzdem ist das Polynom $X + 1$ irreduzibel, das Polynom [mm] $X^2 [/mm] + 1$ jedoch nicht! Und das Polynom [mm] $X^4 [/mm] + X + 1$ ist etwa irreduzibel, das Polynom [mm] $X^4 [/mm] + [mm] X^2 [/mm] + 1 = [mm] (X^2 [/mm] + X + [mm] 1)^2$ [/mm] jedoch nicht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de