www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - gerade berührt kreis
gerade berührt kreis < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gerade berührt kreis: lösungsschritt gesucht
Status: (Frage) beantwortet Status 
Datum: 16:56 Do 30.11.2006
Autor: KatjaNg

Aufgabe
Bestimmen sie die Zahl c [mm] \varepsilon \IR [/mm] so, dass die Gerade g: 3 [mm] x_{1} [/mm] - [mm] x_{2} [/mm] = c den Kreis k: [mm] x_{1}^{2} [/mm] + [mm] x_{2}^{2} [/mm] = 10 berührt. Bestimmen sie die Koordinaten des Berührpunktes.

Hallo.
generell weis ich wie man die Lage untersucht. doch bei der Aufgabe hab ich da so meine probleme. mein Ansatz war das ich c normal behandle und bei g nach [mm] x_{1} [/mm] umstell um somit [mm] x_{1} [/mm] in k einsetzen zu können.
Dabei kommt folgendes heraus. 10 [mm] x_{1}^{2} [/mm] - 6 [mm] x_{1} [/mm] c + [mm] c^{2} [/mm] = 10
...weis aber nich wie weiter. Weis nur die Lösungen sind [mm] c_{1} [/mm] = 10 somit [mm] B_{1} [/mm] (3;-1) und [mm] c_{2}= [/mm] -10 und somit [mm] B_{2} [/mm] (-3;1 ).
Bitte um einen Lösungsweg...schnell...danke im vorraus schon mal.. MfG Katja

        
Bezug
gerade berührt kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Do 30.11.2006
Autor: M.Rex

Hallo Katja.

Du hast den kreis x²+y²=10, und die Gerade 3x-y=c [mm] \gdw [/mm] y=3x-c

Jetzt suchst du den Berührpunkt.
Dieser liegt ja auf dem Kreis und der geraden.

Also:
Gerade in Kreis einsetzen.

Dann steht dort.

x²+(3x-c)²=10
[mm] \gdw [/mm] x²+9x²-6cx+c²-10=0
[mm] \gdw x²-\underbrace{\bruch{6c}{10}}_{p}x+\underbrace{(\bruch{c²-10}{10}}_{q}=0 [/mm]

Das in die p-q-Formel eingesetzt ergibt:
[mm] x_{1;2}=\bruch{3c}{10}\pm\wurzel{\bruch{9c²}{100}-\bruch{c²+10}{10}} [/mm]

Jetzt kommt der "Trick".
Da die Graphen sich berühren sollen, darf es nur eine n Schnittpunkt geben. Die P-Q-Formel liefert aber zwei Ergebnisse, es sei denn, der Term unter der Wurzel wird Null.
Und genau das berechnest du jetzt.
es gilt also:

[mm] \bruch{9c²}{100}-\bruch{c²+10}{10}=0 [/mm]

und daraus das c zu berechnen überlasse ich jetzt dir.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de