www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - freie Algebra
freie Algebra < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

freie Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:34 Mo 30.06.2008
Autor: AnnaM

Hallo,

vielleicht ist es gerade einfach schon zu spät, oder ich habe ein Brett vorm Kopf, aber ich komme einfach nicht weiter.
Ich habe ein K-ALgebra A, wobei K ein kommutativer Körper ist. Wenn ich jetzt eine Menge X habe, die A als K-Vektorraum erzeugt und alle Elemente aus X linear unabhängig sind (also ist X eine Vektorraum-Basis von A), ist A dann frei über X?

Also ich komme soweit:
Sei S eine K-Algebra und f:X [mm] \to [/mm] S eine Funktion, dann lässt sich diese Funktion linear fortsetzen zu einer linearen Funktion f':A [mm] \to [/mm] S (A als Vektorraum betrachtet). Aber wie sehe ich jetzt, ob es auch einen Algebrenhomomorphismus von A nach S gibt?
Oder geht das gar nicht?

Schöne Grüße Anna.

        
Bezug
freie Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Mo 30.06.2008
Autor: felixf

Hallo Anna

> vielleicht ist es gerade einfach schon zu spät, oder ich
> habe ein Brett vorm Kopf, aber ich komme einfach nicht
> weiter.
>  Ich habe ein K-ALgebra A, wobei K ein kommutativer Körper
> ist. Wenn ich jetzt eine Menge X habe, die A als
> K-Vektorraum erzeugt und alle Elemente aus X linear
> unabhängig sind (also ist X eine Vektorraum-Basis von A),
> ist A dann frei über X?
>  
> Also ich komme soweit:
>  Sei S eine K-Algebra und f:X [mm]\to[/mm] S eine Funktion, dann
> lässt sich diese Funktion linear fortsetzen zu einer
> linearen Funktion f':A [mm]\to[/mm] S (A als Vektorraum betrachtet).
> Aber wie sehe ich jetzt, ob es auch einen
> Algebrenhomomorphismus von A nach S gibt?
>  Oder geht das gar nicht?

Das geht gar nicht: wegen dem Basisaustauschsatz (fuer Vektorraeume) kannst du $X$ immer durch eine Menge $X'$ ersetzen, in der $1$ liegt. Und weil beides Vektorraumbasen sind und diese auf eine recht einfache Weise auseinander entstehen, ist $A$ genau dann frei ueber $X$, wenn es frei ueber $X'$ ist. Allerdings kann $A$ niemals frei ueber $X'$ sein, da die 1 immer auf die 1 abgebildet werden muss durch $K$-Algebra-Homomorphismen.

LG Felix


Bezug
                
Bezug
freie Algebra: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Mo 30.06.2008
Autor: AnnaM

Ah gut (oder auch nicht).

Auf jeden Fall vielen Dank.

Liebe Grüße,
Anna.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de