www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - exp(ab) Lebesgue Int.bar
exp(ab) Lebesgue Int.bar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exp(ab) Lebesgue Int.bar: Wie approximiere ich richtig?
Status: (Frage) überfällig Status 
Datum: 23:02 Mo 06.12.2010
Autor: carlosfritz

Aufgabe
Zeige f: [mm] [0,1]^{2} \rightarrow \IR [/mm] ; (a,b) [mm] \mapsto e^{ab} [/mm] ist [mm] \lambda_{2}-Lebesgue-Int.bar. [/mm]


Hallo, ich kann hier durch euch begleitend diese Aufgabe lösen.

Nach unserer Definition, ist Eine Funktion Leb.Int.bar, wenn es eine [mm] L_{1}-Couchy-Folge [/mm] von Treppenfunktionen gibt, die punktweise (fastüberall) gegen die Funktion konvergiert.


D.h. also ich muss mir so eine Folge von Treppenfunktionen basteln. Da kommt die Reihenentwicklung von [mm] e^{xy} [/mm] ins Spiel. Jetzt aber schon meine erste Frage.

Kann ich sagen f= [mm] \summe_{i=0}^{\infty}\bruch{(ab)^{i}}{i!} 1_{[0,1]^{2}} [/mm] ?



Dann könnte ich doch einfach setzen [mm] f_{i}:= \summe_{n=0}^{i}\bruch{(ab)^{n}}{n!} [/mm]

und f.a. i,k [mm] \in \IN [/mm] mit i [mm] \le [/mm] k setze ich [mm] A_{i,k}:= [\bruch{i-1}{k} [/mm] , [mm] \bruch{i}{k}] \times [/mm] [0,1]

Setze ich nun [mm] f^{(k)}:= \summe_{i=1}^{k}f_{i} 1_{A_{i,k}} [/mm]

Dann ist doch  [mm] f^{(k)} [/mm] eine Treppenfunktion und  [mm] (f^{(k)})_{k} [/mm] ein Folge von Treppenfunktionen.


Mein Problem ist nun zu zeigen, dass das gegen f konvergiert und dass es eine Couchy Folge ist (ich hoffe doch sie ist eine), da meine [mm] A_{i,k} [/mm] ja unterschiedlich sind für verschiedene k.



        
Bezug
exp(ab) Lebesgue Int.bar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Di 07.12.2010
Autor: fred97

Der Def. bereich von f ist kompakt und f ist auf diesem stetig. Dann ist f L -integrierbar

FRED

Bezug
                
Bezug
exp(ab) Lebesgue Int.bar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Di 07.12.2010
Autor: carlosfritz

hmm okay, das mag sein (oder auch nicht), das kenne ich leider (noch) nicht.

Sätze zur Integrierbarkeit hatten wir noch nicht. Außer: Wenn f-L-Intbar ist, dann auch |f|.

Bezug
                        
Bezug
exp(ab) Lebesgue Int.bar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Di 07.12.2010
Autor: fred97


> hmm okay, das mag sein (oder auch nicht),


Was soll das ? Es ist so !

FRED


> das kenne ich
> leider (noch) nicht.
>  
> Sätze zur Integrierbarkeit hatten wir noch nicht. Außer:
> Wenn f-L-Intbar ist, dann auch |f|.


Bezug
                                
Bezug
exp(ab) Lebesgue Int.bar: Sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 Di 07.12.2010
Autor: carlosfritz

Ich wollte damit nur zum Ausdruck bringen, dass ich es nicht verifizieren kann. Ich kann mir das nicht herleiten und behandelt haben wir dies auch nicht....

Bezug
        
Bezug
exp(ab) Lebesgue Int.bar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Mi 08.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de