www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - euklidischer Ring
euklidischer Ring < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

euklidischer Ring: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:01 Di 18.04.2006
Autor: Elbi

Aufgabe
Es sei [mm]\IZ [i] := \{a + bi | a,b\in \IZ \} \subseteq \IC[/mm]
Zeigen Sie:
[mm]\IZ [i][/mm] ist euklidischer Ring bzgl. geeigneter Abbildung.

Hallo ihr's,

ich hoffe ihr hattet schöne Ostern.
Also ich hab' da sie Aufgabe und weiß einfach nicht wie ich das zeigen soll. Wie zeige ich, dass etwas ein euklidischer Ring ist?

Wäre echt super nett, wenn mir das jemand erklären könnte.

LG

Elbi

        
Bezug
euklidischer Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 18.04.2006
Autor: choosy

nun zuerst musst du  jene geeigneten Abbildungen angeben, die in der aufgabe genannt werden. (das sind die standard multiplikation und addition in [mm] $\IC$) [/mm]

dann musst du damit die Ringeigenschaften nachrechnen
z.B.
[mm] $0\in \IZ [/mm] [i]$ ist erfüllt, denn $ 0 = 0+0i, [mm] 0\in \IZ$ [/mm]

als letztes musst du noch nachrechnen ob der Ring euklidisch ist.

Bezug
        
Bezug
euklidischer Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Di 18.04.2006
Autor: yalu

Hey du.

Also zufälliger Weise muss ich die selbe Aufgabe lösen ;-).
Ich entnehme der Definition aus der Vorlesung doch, dass wir zwei Dinge zeigen müssen:

(i) R ist nullteilerfrei also ein Integritätsbereich - d.h. z.B.:

[mm] \forall [/mm] a,b [mm] \in [/mm] R mit a [mm] \not= [/mm] 0 , b  [mm] \not= [/mm] 0 : a * b [mm] \not= [/mm] 0

(ii) für die angegebene Abbildung gilt:
[mm] \forall [/mm] a,b [mm] \in [/mm] R [mm] \exists [/mm] q,r [mm] \in [/mm] R mit a = qb + r wobei r=0 oder  [mm] \nu(r) [/mm] < [mm] \nu(b) [/mm]

Also muss man quasi explizit ein q,r angeben für alle a,b  ??
Ich habe bis jetzt beides nicht geschafft :-)
Also bin auch über gute Tipps dankbar :-)

Bezug
        
Bezug
euklidischer Ring: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 20.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de