www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - ebenen
ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 15.07.2008
Autor: Lara102

Aufgabe
gegeben sind zwei punkte a und b. diese liegen bezüglich einer ebene e symmetrisch.
beschreiben sie ein verfahren zur bestimmung einer gleichung von e.

hallo, ich weiß nicht so recht wie ich bei dieser aufgabe anfangen soll, bzw wie ich die ebenengleichung bestimmen soll. ich hab mir bisher gedacht, dass die zwei punkte auf einer gerade liegen . die gesuchte ebene liegt orthogonal zu der gerade. und hat von a und b den gleichen abstand...die ebene e wäre somit symmetrieebene..
wäre so etwas denkbar? wie mache ich dann weiter?
liebe grüße
lara

        
Bezug
ebenen: Punkt und Normalenvektor
Status: (Antwort) fertig Status 
Datum: 19:34 Di 15.07.2008
Autor: Loddar

Hallo Lara!


Das klingt doch schon ganz gut ...

Mit dem Verbindungsvekotr [mm] $\overrightarrow{AB}$ [/mm] kennst Du also einen Normalenvektor der gesuchten Ebene.

Und Du kennst auch einen Punkt der Ebene: den Mittelpunkt zwischen $A_$ und $B_$ .


Gruß
Loddar


Bezug
        
Bezug
ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 15.07.2008
Autor: Al-Chwarizmi

hallo Lara,

Loddar hat dir schon einen guten Tipp gegeben für die
vermutlich einfachste Lösung.
Hier ein anderer Vorschlag:
Auf der gesuchten Ebene liegen genau jene Punkte
P(x/y/z), welche von den beiden gegebenen Punkten
A und B den gleichen Abstand haben. Wenn du diese
Abstände (oder besser gerade deren Quadrate) einander
gleichsetzt, kommst du zu einer Gleichung, die zwar
zuerst den Anschein einer quadratischen Gleichung
macht. Die Quadrate fallen aber sofort heraus, und
was übrig bleibt, ist die gesuchte Ebenengleichung !

LG  al-Chwarizmi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de