www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Äquivalenzklasse Vektoren
Äquivalenzklasse Vektoren < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklasse Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 So 06.12.2009
Autor: steppenhahn

Aufgabe
Sei V ein K-Vektorraum und U ein Untervektorraum.
[mm] \sim [/mm] mit $v [mm] \sim [/mm] w [mm] :\gdw [/mm] v - w [mm] \in [/mm] U$ ist eine Äquivalenzrelation auf V.
Wir bezeichnen die Äquivalenzklasse von [mm] $v\in [/mm] V$ mit $[v]$ und die Menge der Äquivalenzklassen sei $V /U := [mm] \{ [v] | v \in V \}$. [/mm]

Zeigen Sie: Die Äquivalenzklasse von $v [mm] \in [/mm] V$ lässt sich formulieren als $[v] = v + U := [mm] \{v + u | u \in U \}$ [/mm]

Hallo!

Mein Beweis scheint mir noch etwas holprig, deswegen wollte ich euch darum bitten, ein kritisches Auge darauf zu werfen :-) :

Beweis: Es ist eine Gleichheit von Mengen zu zeigen, und zwar die Folgende:

[mm] $\{x\in U: v-x \in U\} [/mm] = [mm] \{v + u | u \in U \}$. [/mm]

(Da  $[v] = [mm] \{x\in U: v \sim x\} [/mm] = [mm] \{x\in U: v-x \in U\}$ [/mm] )

" [mm] \subset [/mm] ":

Sei $x [mm] \in \{x\in U: v-x \in U\}$, [/mm] d.h. $v-x [mm] \in [/mm] U$. Zu zeigen ist, dass sich x schreiben lässt als $v+u$ mit [mm] $u\in [/mm] U$.

Nun, es ist $x = x - v + v = (x-v) + v$, und da [mm] $(v-x)\in [/mm] U$, ist natürlich auch $(x-v) = [mm] -(v-x)\in [/mm] U$. Damit lässt sich x in der Form [mm]x = u + v[/mm] schreiben mit [mm]u = (x-v)\in U[/mm], also ist [mm] $x\in \{v + u | u \in U\}$. [/mm]

" [mm] \supset [/mm] ":

Sei [mm] $x\in \{v + u | u \in U\}$, [/mm] d.h. es existiert ein [mm] $u\in [/mm] U$ sodass $x = u+v$. Zu zeigen ist, dass [mm] $x\in [/mm] [v]$, d.h. dass [mm] $v-x\in [/mm] U$.

Naja, es ist $v-x = v - (u+v) = [mm] -u\in [/mm] U$, da [mm] $u\in [/mm] U$. Damit ist [mm] $v-x\in [/mm] U$, also [mm] $x\in [/mm] [v]$.


Mache ich irgend etwas falsch? Das ist nun doch etwas sehr einfach...
Danke für Eure Hilfe!

Grüße,
Stefan


        
Bezug
Äquivalenzklasse Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 01:22 Mo 07.12.2009
Autor: leduart

Hallo
v ist doch i. A. nicht aus U.
deshalb ist schon deine erste Darstellung falsch. nach Definition eines unterraums liegt mit [mm] x\in [/mm] U und [mm] v-x\in [/mm] U auch v [mm] \in [/mm] U
d. h. alle Vektoren aus U gehören von alleine zu der Äquivalenzklasse. Das scheinst du zu zeigen.
Aber die Äquivalenzklasse enthält doch auch [mm] v\in [/mm] V mit [mm] v\not\in [/mm] U
Bsp im [mm] R^2 [/mm]
sei der Unterraum Span von (1,0) (die x- Achse)
v=(a,b) ist äquivalent zu w=(c,b) nach definition, da [mm] v-w=(a-c,0)\in [/mm] U
weder v noch w liegen in U.
Gruss leduart

Bezug
                
Bezug
Äquivalenzklasse Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Mo 07.12.2009
Autor: steppenhahn

Hallo leduart,

erstmal danke für deine Antwort. Ich glaube verstanden zu haben, worauf du hinauswolltest: Es handelt sich ja um eine Äquivalenzrelation auf V, ich habe aber auf U operiert (wo nur durch Zufall das richtige rauskommen kann).

Wäre es so besser: " [mm] \subset [/mm] "

Sei $x [mm] \in \{x\in \red{V}: v-x \in U\}$, [/mm] d.h. $v-x [mm] \in [/mm] U$. Zu zeigen ist, dass sich x schreiben lässt als $v+u$ mit [mm] $u\in [/mm] U$.

Nun, es ist $x = x - v + v = (x-v) + v$, und da [mm] $(v-x)\in [/mm] U$, ist natürlich auch $(x-v) = [mm] -(v-x)\in [/mm] U$. Damit lässt sich x in der Form [mm]x = u + v[/mm] schreiben mit [mm]u = (x-v)\in U[/mm], also ist [mm] $x\in \{v + u | u \in U\}$. [/mm]

?

Der Beweis für [mm] \supset [/mm]  würde ja der Gleiche bleiben.
Wenn das oben falsch sein sollte, verstehe ich nicht ganz, was du mir mit "ich benutze, dass v in U liegt", sagen wolltest, weil ich es doch gar nicht benutze?

Danke für erneute Hilfe ;-)

Grüße,
Stefan

Bezug
                        
Bezug
Äquivalenzklasse Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Mo 07.12.2009
Autor: angela.h.b.

  
> Wäre es so besser:

Hallo,

vorher war es falsch, und nun ist es richtig. Insofern also auch besser.

> " [mm]\subset[/mm] "
>  
> Sei [mm]x \in \{x\in \red{V}: v-x \in U\}[/mm], d.h. [mm]v-x \in U[/mm]. Zu
> zeigen ist, dass sich x schreiben lässt als [mm]v+u[/mm] mit [mm]u\in U[/mm].
>
> Nun, es ist [mm]x = x - v + v = (x-v) + v[/mm], und da [mm](v-x)\in U[/mm],
> ist natürlich

Statt der Natürlichkeit könntest Du hier das Axiom anführen - kommt hat drauf an, wie natürlich das Natürliche bei Euch ist.

> auch [mm](x-v) = -(v-x)\in U[/mm]. Damit lässt sich
> x in der Form [mm]x = u + v[/mm] schreiben mit [mm]u = (x-v)\in U[/mm], also
> ist [mm]x\in \{v + u | u \in U\}[/mm].
>  
> ?
>  
> Der Beweis für [mm]\supset[/mm]  würde ja der Gleiche bleiben.
>  Wenn das oben falsch sein sollte, verstehe ich nicht ganz,

> was du mir mit "ich benutze, dass v in U liegt", sagen
> wolltest, weil ich es doch gar nicht benutze?

Verdeckt "benutzt"  Du es schon.
Du schreibst fälschlicherweise
[mm] [v]=\{x\in U| x-v\in U\}. [/mm]
da wir wissen, daß [mm] v\in [/mm] [v], müßte also Deiner Def. nach [mm] v\in [/mm] U sein.

Gruß v. Angela



Bezug
                                
Bezug
Äquivalenzklasse Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Mo 07.12.2009
Autor: steppenhahn

Hallo,

vielen Dank, Angela, für deine Antwort!

> > Nun, es ist [mm]x = x - v + v = (x-v) + v[/mm], und da [mm](v-x)\in U[/mm],
> > ist natürlich
>
> Statt der Natürlichkeit könntest Du hier das Axiom
> anführen - kommt hat drauf an, wie natürlich das
> Natürliche bei Euch ist.
>  
> > auch [mm](x-v) = -(v-x)\in U[/mm].

Finde ich gut, das Argument der "Natürlichkeit" :-) Sollte ich öfter anwenden ;-)

Nein, also das ist so, weil U als K-Vektorraum natürlich insbesondere eine abelsche Gruppe (U,+) ist, und wenn [mm] $u\in [/mm] U$, dann ist auch [mm] $-u\in [/mm] U$ (wobei -u das additiv inverse zu u bezeichnet).

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de