www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wkt. für Wertebereich in ...
Wkt. für Wertebereich in ... < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wkt. für Wertebereich in ...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Di 07.04.2015
Autor: mmfbn

Aufgabe
gegeben: Summme S aus n unabhängigen uniform verteilten Werten im Bereich [a,c]
gesucht: Wahrscheinlichkeit für Werte w [mm] \in [/mm] S mit w [mm] \ge [/mm] b (b > n*a, b <n*c)

Hi,
für eine konkrete Berechnung benötige ich das für n=3. Ich weiß, dass die Summe zweier uniform verteilten Größen die Dreiecksverteilung haben und für n gegen undenlich eine Normalverteilung draus wird und man da i.d.R. eine Tabelle zur Hilfe nimmt. Kann man es für kleine n aussrechnen? Und wenn ja wie?


--------------
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wkt. für Wertebereich in ...: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Di 07.04.2015
Autor: Gonozal_IX

Hiho,

man kann es nicht nur für kleine n berechnen, auch für große.
Die Frage ist nur, mit welchem Aufwand....

Aber gut, letztlich geht das recht einfach:

Es gilt [mm] $X_i \sim \mathcal{U}\left([a,c]\right)$ [/mm] und damit die Dichte [mm] $f_{X_i} [/mm] = [mm] \bruch{1}{c-a}*1_{[a,c]}$ [/mm]

Da die [mm] X_i [/mm] unabhängig sind, ist somit die gemeinsame Dichte gegeben durch

[mm] $f_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n) [/mm] = [mm] \produkt_{k=1}^n f_{X_k}(x_k) [/mm] = [mm] \bruch{1}{(c-a)^n}*1_{[a,c]^n}$ [/mm]

Damit gilt für $S = [mm] \sum_{k=1}^n X_k$ [/mm] und [mm] $b\in [/mm] [n*a,n*c]$

$P(S [mm] \ge [/mm] b) = [mm] \integral_{S\ge b} f_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n) d(x_1,\ldots,x_n) [/mm] = [mm] \bruch{1}{(c-a)^n} \integral_{S\ge b} 1_{[a,c]^n} d(x_1,\ldots,x_2)$ [/mm]

Und letzteres gibt es bestimmt ne Formel für.
Anschaulich ist das halt die Fläche im [mm] $\IR^n$-Quader [a,c]^n [/mm] deren Summe der Komponenten größer als b ist.

Gruß,
Gono

Bezug
                
Bezug
Wkt. für Wertebereich in ...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Di 07.04.2015
Autor: mmfbn

Hi Gono,
danke für die schnelle Antwort. An [mm] $\IR^n$ [/mm] Quader hatte ich auch gerade gedacht (aber noch nich fertig gedacht :) ).
Die [mm] 1_{[a,c]} [/mm] Notation sagt mir nix. Habe ich bisher noch nicht verwendet.
Ich suche mal.

Bezug
                        
Bezug
Wkt. für Wertebereich in ...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Di 07.04.2015
Autor: DieAcht

Hallo mmfbn und [willkommenmr]


> Die [mm]1_{[a,c]}[/mm] Notation sagt mir nix. Habe ich bisher noch nicht verwendet.

Sei [mm] A\subseteq\Omega, [/mm] dann ist

      [mm] 1_{A}\colon \Omega\to\{0,1\}\colon \omega\mapsto \begin{cases} 1, & \mbox{falls } \omega\in A \\ 0, & \mbox{sonst } \end{cases} [/mm]

die dazugehörige charakteristische Funktion (oder auch Indikator-
funktion). Dabei ist auch die Schreibweise [mm] \chi_{A} [/mm] gebräuchlich.


Gruß
DieAcht
      


Bezug
                                
Bezug
Wkt. für Wertebereich in ...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Di 07.04.2015
Autor: mmfbn

Ja,
dankeschön DieAcht. Hatte meinen Beitrag editiert. Aber danke für die Bestätigung.

Sooo.. bleibt noch das Integral zu lösen.
Bisher nix gefunden. Ich suche weiter.

Bezug
        
Bezug
Wkt. für Wertebereich in ...: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Di 07.04.2015
Autor: luis52


>  Hi,
>  für eine konkrete Berechnung benötige ich das für n=3.
> Ich weiß, dass die Summe zweier uniform verteilten
> Größen die Dreiecksverteilung haben und für n gegen
> undenlich eine Normalverteilung draus wird  

Moin, das stimmt aber nicht. Fuer eine Gleichverteilung in $[0,2]$ gilt [mm] $E[S]\to\infty$. [/mm]

Viellecht kriegst du Anregungen []hier, Seite 238.

Bezug
                
Bezug
Wkt. für Wertebereich in ...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 07.04.2015
Autor: mmfbn


> Moin, das stimmt aber nicht. Fuer eine Gleichverteilung in $[0,2]$ gilt [mm] $E[S]\to\infty$. [/mm]

Ja, ich muss den Mittelwert vorher abziehen.

Edit:

Ah danke für den Link, ich glaub ich hab es. für n=3, a*n=0, c*n=1 ist die Dichtefunktion:
[mm] $f_{\overline{X}_3} [/mm] (x)= [mm] \begin{cases} \bruch{27}{2} x^2, & \mbox{für } 0 < x \le 1/3 \\ 27[\bruch{1}{12}-(x-\bruch{1}{2})^2], & \mbox{für } 1/3 < x \le 2/3 \\ \bruch{27}{2} (1-x)^2, & \mbox{für } 2/3 < x \le 1 \end{cases}$ [/mm]

Das ganze integrieren und mit gewünschter Zahl  b ausrechnen. Falls 1/3 < b < 2/3 ist nicht vergessen den restlichen Teil zu addieren.

Danke an alle Helfer!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de