www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Do 12.09.2013
Autor: Zwinkerlippe

Aufgabe
Geben Sie das Symbol für die Wahrscheinlichkeit beim 8-maligen Würfeln

a) mindestens 3 mal eine "4"
b) weniger als 4 mal eine "5"
c) höchstens 6 mal eine "1"
d) mehr als 3 mal eine "6" zu erhalten

Wieder Hallo, diese Aufgabe will ich heute noch schaffen, morgen oder übermorgen geht es weiter

a) ich weiß, es wird P(...) benutzt, zu rechnen ist ja nichts, aber mehr Ansätze kann ich nicht bieten, kann mir jemand Ansätze für a) geben, dann versuche ich es weiter zu lösen, Danke zwinkerlippe

        
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Do 12.09.2013
Autor: Al-Chwarizmi


> Geben Sie das Symbol für die Wahrscheinlichkeit beim
> 8-maligen Würfeln
>  
> a) mindestens 3 mal eine "4"
>  b) weniger als 4 mal eine "5"
>  c) höchstens 6 mal eine "1"
>  d) mehr als 3 mal eine "6" zu erhalten
>  Wieder Hallo, diese Aufgabe will ich heute noch schaffen,
> morgen oder übermorgen geht es weiter
>  
> a) ich weiß, es wird P(...) benutzt, zu rechnen ist ja
> nichts, aber mehr Ansätze kann ich nicht bieten, kann mir
> jemand Ansätze für a) geben, dann versuche ich es weiter
> zu lösen, Danke zwinkerlippe



Guten Abend,

könntest du uns mitteilen, was du unter "Symbol für
eine gewisse Wahrscheinlichkeit" verstehst ?

LG ,   Al-Chw.


Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Do 12.09.2013
Autor: Zwinkerlippe

Hallo, leider kann ich deine Frage nicht beantworten, so steht sie wörtlich auf unserem Übungsblatt zwinkerlippe

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Do 12.09.2013
Autor: abakus


> Hallo, leider kann ich deine Frage nicht beantworten, so
> steht sie wörtlich auf unserem Übungsblatt zwinkerlippe

Hallo,
wurden in der Aufgabe zu Beginn irgendwelche Zufallsgrößen eingeführt?
Z.B.
"Sei X die Anzahl der geworfenen Vieren" ?
Gruß Abakus

Bezug
        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Do 12.09.2013
Autor: Ladon

Da kann ich meinem Vorredner nur beipflichten, dass es schwer ist zu raten, was du meinst. Hier aber ein Versuch:
Vielleicht meinst du
[mm] $P(X=k)=\vektor{n \\ k}\cdot p^k\cdot q^{n-k}$ [/mm] auch Binomialverteilung genannt.
Allerdings hat das eher damit etwas zu tun, z.B. bei 4x Würfeln eine 6 zu würfeln:
[mm] $P(X=1)=\vektor{4 \\ 1}\cdot {\frac{1}{6}}^1\cdot {\frac{5}{6}}^{4-1}$. [/mm]
Für deinen Fall müsstest du wahrscheinlich folgende Formel nutzen:
[mm] $P(X\le k)=\summe_{i=0}^{k}\vektor{n \\ i}\cdot p^i\cdot (1-p)^{n-i}$ [/mm]
Z.B. ist auch [mm] $P(X>4)=1-P(X\le4)$ [/mm] möglich oder [mm] $P(X<3)=P(X\le2)$ [/mm] oder [mm] $P(3

Bezug
        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:15 Fr 13.09.2013
Autor: tobit09

Hallo Zwinkerlippe,


auch ich kenne den Kontext eurer Vorlesung nicht, in dem diese Aufgabe auftaucht. Passt folgendes dazu?

Wir modellieren den 8-fachen Würfelwurf durch

     [mm] $\Omega=\{(\omega_1,\omega_2,\ldots,\omega_8)\;|\;\omega_1,\omega_2,\ldots,\omega_8\in\{1,\ldots,6\}\}=\{1,2,3,4,5,6\}^8$. [/mm]

Dabei steht [mm] $(\omega_1,\omega_2,\ldots,\omega_8)\in\Omega$ [/mm] dafür, dass beim ersten Würfelwurf [mm] $\omega_1$, [/mm] beim zweiten Würfelwurf [mm] $\omega_2$, [/mm] ..., beim achten Würfelwurf [mm] $\omega_8$ [/mm] als Augenzahl erschien.

Sei $P$ die Laplace-Verteilung auf [mm] $\Omega$. [/mm]

Dann entspricht das "reale" Ereignis, dass mindestens dreimal eine vier gewürfelt wurde, dem "mathematischen" Ereignis

     [mm] $A:=\{(\omega_1,\ldots,\omega_8)\in\Omega\;|\;\omega_i=4\text{ für mindestens 3 }i\in\{1,\ldots,8\}\}\subseteq\Omega$. [/mm]

Die gesuchte Wahrscheinlichkeit bei a) ist also $P(A)$.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de