www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:34 Sa 09.12.2017
Autor: lu8

Ein Hersteller von Getränkeautomaten erhält eine größere Lieferung mit elektronischen Bauelementen.
Es ist bekannt, dass diese Lieferungen im Durchschnitt 1 Prozent defekte Teile
enthalten.
a) Der Kunde entnimmt der Warenlieferung eine Stichprobe von 20 Bauelementen. Wie
groß ist die Wahrscheinlichkeit P1a, dass die Stichprobe mindestens ein defektes Teil
enthält?
b) Wie groß muss der Umfang nmin die Stichprobe mindestens sein, damit sie mit einer
Wahrscheinlichkeit größer als 0,4 mindestens ein defektes Teil enthält?
Bei der Produktion von Getränkeautomaten werden jeweils 10 dieser Bauelemente in ein Gerät
eingebaut. Der Getränkeautomat funktioniert nur dann, wenn alle 10 Bauelemente
fehlerfrei waren.
c) Berechnen Sie die Wahrscheinlichkeit P1c, dass ein produzierter Getränkeautomat
funktionsfähig ist.
d) Wie groß ist die Wahrscheinlichkeit P1d, dass ein nicht funktionsfähiger Getränkeautomat
mehr als eines der defekten Bauelemente enthält?
e) Mit welcher Wahrscheinlichkeit P1e sind von 30 hergestellten Getränkeautomaten weniger
als 2 nicht funktionsfähig? </task>
Ich habe Probleme bei Aufgabenteil b).
Mein Ansatz wäre:

[mm] 1-(0,99^9 [/mm] * 0,01 + 0,99^10)

Vielleicht könnt Ihr auch erläutern warum man das nicht so rechnet, denn ich verstehe das im Moment nicht.
Vielen Dank für eure Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Sa 09.12.2017
Autor: Diophant

Hallo,

> Ein Hersteller von Getränkeautomaten erhält eine
> größere Lieferung mit elektronischen Bauelementen.
> Es ist bekannt, dass diese Lieferungen im Durchschnitt 1
> Prozent defekte Teile
> enthalten.

.
.

> b) Wie groß muss der Umfang nmin die Stichprobe
> mindestens sein, damit sie mit einer
> Wahrscheinlichkeit größer als 0,4 mindestens ein
> defektes Teil enthält?

.
.

> Ich habe Probleme bei Aufgabenteil b).
> Mein Ansatz wäre:

>

> [mm]1-(0,99^9[/mm] * 0,01 + 0,99^10)

>

> Vielleicht könnt Ihr auch erläutern warum man das nicht
> so rechnet, denn ich verstehe das im Moment nicht.

Nun, da muss in der Rechnung ja irgendwo der Umfang der Stichprobe vorkommen. Das ganze ist ein Klassiker und läuft auf eine Ungleichung hinaus. Das Gegenereignis zu 'mindestens ein Teil ist defekt' lautet 'kein Teil ist defekt'. Die Wahrscheinlichkeit, dass bei einem Stichprobenumfang von n kein Teil defekt ist, berechnet sich zu

[mm] 0.99^n [/mm]

Die des Gegenereignisses somit zu

[mm] 1-0.99^n [/mm]

Diese Wahrscheinlichkeit soll größer als 40% sein, also wird daraus unmittelbar die Ungleichung

[mm] 1-0.99^n>0.4 [/mm]

Diese muss nach n aufgelöst werden.


Gruß, Diophant

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Sa 09.12.2017
Autor: lu8

Vielen Dank für die schnelle Antwort.
Wie würde ich bei Aufgabenteil d) und e) vorgehen?

Mit freundlichen Grüßen

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Sa 09.12.2017
Autor: Diophant

Hallo,

> Vielen Dank für die schnelle Antwort.
> Wie würde ich bei Aufgabenteil d) und e) vorgehen?

d): Bedingte Wahrscheinlichkeit
e): Binomialverteilung.

Bei d) hast du ja die Wahrscheinlichkeit, dass der Automat nicht funktioniert, durch das Gegenereignis zu Aufgabenteil c) vorliegen. Du benötigst hier also noch die Wahrscheinlichkeit, dass der Automat defekt ist und mehr als ein defektes Bauelement enthält. Die kann man relativ einfach wieder über ein geeignetes Gegenereignis bekommen.

Bei e) nimmst du 1-P1c als Wahrscheinlichkeit p für die Binomialverteilung.


Gruß, Diophant

Bezug
                                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Sa 09.12.2017
Autor: lu8

Kann mir jemand  genau erklären, wie ich bei der d) die bedingte Wahrscheinlichkeit berechne?
Mein Ansatz wäre:

(1-0,99 ^ 10)*(1-(0,99 ^ 9 * 0,01+0,99 ^ 10))= 0,00827


Ich komme leider nicht auf das richtige Ergebnis bei der d) 4,4%.
Vielen Dank im Voraus.

Bezug
                                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 So 10.12.2017
Autor: Diophant

Hallo,

> Kann mir jemand genau erklären, wie ich bei der d) die
> bedingte Wahrscheinlichkeit berechne?
> Mein Ansatz wäre:

>

> (1-0,99 ^ 10)*(1-(0,99 ^ 9 * 0,01+0,99 ^ 10))= 0,00827

>

Es wäre nicht schlecht, solche Ansätze zu kommentieren (ich kann hier nicht nachvollziehen, wie du darauf kommst, würde dies aber gerne). Aber in der Tat ist dein Eregbnis falsch.

> Ich komme leider nicht auf das richtige Ergebnis bei der d)
> 4,4%.

Ein Stück weit nehme ich das auch auf meine Kappe, weil mein Tipp zu d) ein wenig in die Irre geführt hat bzw. viel zu kompliziert gedacht war. Es handelt sich zwar in der Tat um eine bedingte Wahrscheinlichkeit, die man aber per Binomialverteilung (mit n=10 und p=0.01) knacken kann. Die Wahrscheinlichkeit P1d berechnet sich damit zu

[mm]\text{P1d}= \frac{P\left(X\ge{2}\right)}{P\left(X\ge{1}\right)}[/mm]

Rechne es selbst nach: da kommen eben die 4.4% heraus.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de