www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeiten
Wahrscheinlichkeiten < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten: Münze
Status: (Frage) beantwortet Status 
Datum: 17:30 Do 25.09.2008
Autor: Julia1988

Aufgabe
4 a) Eine Münze wird zweimal geworfen. Bestimme für das Ergebnis (1) einmal Wappen; (2) mindestens einmal Wappen.

b) Eine Münze wird dreimal geworfen. Welche Wahrscheinlichkeiten hat das Ergebnis
(1) mehr als 2- mal Wappen; (2) höchstens 2- mal Wappen;
(3) mindestens 1- mal Wappen; (4) genau 1- mal Wappen.

Ich hatte die Aufgabe in der Schule angefangen. Meine Ergebnisse: 4 a) (1) 2/4= 50 %   (2) 3/4= 75%  
b) (1) 3/2= 15%  
Ichw eiß das es die Möglichkeit gibt das mit einer Zeichnung (baum) zu berechnen. Ich finde den Weg kompliziert und hatte es anders berchnet, indem ich mir einfach immer die möglichen Reinfolgen aufgeschriben habe und dann zusammengezählt (WWZ; Z.B.).
Das blöde ist, dass ich gar nicht mehr weiß wie man das rechnet. kann mir jemand helfen. so kann ich die aufgaben nicht fertig machen.

        
Bezug
Wahrscheinlichkeiten: a)
Status: (Antwort) fertig Status 
Datum: 17:47 Do 25.09.2008
Autor: Disap

Guten Abend!

> 4 a) Eine Münze wird zweimal geworfen. Bestimme für das
> Ergebnis (1) einmal Wappen; (2) mindestens einmal Wappen.
>  
> b) Eine Münze wird dreimal geworfen. Welche
> Wahrscheinlichkeiten hat das Ergebnis
>  (1) mehr als 2- mal Wappen; (2) höchstens 2- mal Wappen;
>  (3) mindestens 1- mal Wappen; (4) genau 1- mal Wappen.
>  Ich hatte die Aufgabe in der Schule angefangen. Meine
> Ergebnisse: 4 a) (1) 2/4= 50 %   (2) 3/4= 75%  

Die sind richtig [daumenhoch]

> b) (1) 3/2= 15%  
> Ichw eiß das es die Möglichkeit gibt das mit einer
> Zeichnung (baum) zu berechnen. Ich finde den Weg
> kompliziert und hatte es anders berchnet, indem ich mir
> einfach immer die möglichen Reinfolgen aufgeschriben habe
> und dann zusammengezählt (WWZ; Z.B.).
>  Das blöde ist, dass ich gar nicht mehr weiß wie man das
> rechnet. kann mir jemand helfen. so kann ich die aufgaben
> nicht fertig machen.


Bezug
        
Bezug
Wahrscheinlichkeiten: b)
Status: (Antwort) fertig Status 
Datum: 17:54 Do 25.09.2008
Autor: Disap


> 4 a) Eine Münze wird zweimal geworfen. Bestimme für das
> Ergebnis (1) einmal Wappen; (2) mindestens einmal Wappen.
>  
> b) Eine Münze wird dreimal geworfen. Welche
> Wahrscheinlichkeiten hat das Ergebnis
>  (1) mehr als 2- mal Wappen; (2) höchstens 2- mal Wappen;
>  (3) mindestens 1- mal Wappen; (4) genau 1- mal Wappen.
>  Ich hatte die Aufgabe in der Schule angefangen. Meine
> Ergebnisse: 4 a) (1) 2/4= 50 %   (2) 3/4= 75%  
> b) (1) 3/2= 15%  

3/2 sind schon größer 1 oder?

> Ichw eiß das es die Möglichkeit gibt das mit einer
> Zeichnung (baum) zu berechnen. Ich finde den Weg
> kompliziert und hatte es anders berchnet, indem ich mir
> einfach immer die möglichen Reinfolgen aufgeschriben habe
> und dann zusammengezählt (WWZ; Z.B.).
>  Das blöde ist, dass ich gar nicht mehr weiß wie man das
> rechnet. kann mir jemand helfen. so kann ich die aufgaben
> nicht fertig machen.

Na ja, ich finde das eigentlich richtig, was du machst
1) WWW, drei Mal Wappen, du wirfst ja nur drei Mal und es sollen mehr als 2 Mal Wappen kommen?

Wie groß ist die Wahrscheinlichkeit, dass hier drei Wappen kommen?

P("Wappen") = 1/2

Und die WKs musst du multiplizieren

P("WWW") = 1/2*1/2*1/2

2) höchstens zwei mal Wappen, da kannst du dir das Leben einfach machen,
du willst jetzt wissen: WK für kein Wappen, für ein Wappen oder für zwei Wappen bei drei mal Werfen.
Welches andere Ereignis bleibt noch? Na ja, drei mal Wappen zu werfen.
Du kannst hier also mit dem Gegenereignis rechnen
P("höchstens zwei Wappen") = 1-P("drei mal Wappen")

3) Mindestens 1 mal Wappen. Kannst du das mit den Fällen 1) und 2) dir selbst erarbeiten? Du nimmst hier einfach das Gegenereignis, 1- p("Genau kein Wappen")

4) Es bleiben die Kombinationen WZZ, ZWZ, ZZW

Die sind alle drei gleichwahrscheinlich, d.h. du musst jetzt nur die WK für ein solches Ereignis ausrechnen und dann rechnen
3*P("ZZW")



Münzenaufgaben sind unglücklich, weil es nur zwei mögliche Ereignisse bei einem Wurf gibt, Z oder W, die auch noch dieselbe WK von 0.5 haben.
ob du nun WW oder ZW erhälst, das ist dieselbe Wahrscheinlichkeit.

Falls du dich darüber gewundert hast :)

Viele Grüße
Disap


Bezug
                
Bezug
Wahrscheinlichkeiten: münzen
Status: (Frage) beantwortet Status 
Datum: 18:33 Do 25.09.2008
Autor: Julia1988

Aufgabe
siehe oben

ok danke. für die wahrscheinlichkeit von drei mal wappen hätte ich dann 12,5% raus. stimmt das ? ich weiß nämlich nicht genau wie man brüche multipliziert (-:

Bezug
                        
Bezug
Wahrscheinlichkeiten: Richtig!
Status: (Antwort) fertig Status 
Datum: 18:35 Do 25.09.2008
Autor: Loddar

Hallo Julia!


>  ok danke. für die wahrscheinlichkeit von drei mal wappen
> hätte ich dann 12,5% raus. stimmt das ?

[ok] Ja.


> ich weiß nämlich nicht genau wie man brüche multipliziert (-:

Na holla ... "Zähler mal Zähler" und "Nenner mal Nenner".


Gruß
Loddar



Bezug
                                
Bezug
Wahrscheinlichkeiten: Ergebnisse Überprüfung
Status: (Frage) beantwortet Status 
Datum: 16:06 Sa 27.09.2008
Autor: Julia1988

Aufgabe
siehe oben

ich habe die aufgaben jetzt gerchnet. ich wäre dankbar wenn jemand guckt ob die ergbenisse hinkommen. in letzter zeit waren meine ergebnisse im unterricht oft falsch, deswegen bin ich etwas verunsichert.
a) (1) 2/4= 50%
   (2) 3/4= 75%

b) (1) 1/8= 12,5%
   (2) 6/8= 75%
   (3) 7/8= 87,5%
   (4) 3/8= 37,5%

Bezug
                                        
Bezug
Wahrscheinlichkeiten: Okay
Status: (Antwort) fertig Status 
Datum: 16:25 Sa 27.09.2008
Autor: Infinit

Hallo Julia,
Deine Rechnungen sind okay, übe aber vorsichtshalber nochmal das Aufschreiben bzw. Bestimmen der einzelnen Fälle. Das ist meistens der schwierigere Schritt, nicht das Multiplizieren von ein paar Zahlen.
Toi, toi, toi,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de