www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Vollstandige Induktion
Vollstandige Induktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollstandige Induktion: 1 Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:34 Fr 10.11.2006
Autor: Rob64

Aufgabe
Zeigen sie mit Hilfe vollständiger Induktion, dass

[mm] \summe_{i=1}^{n}k³ [/mm] = [mm] \bruch{n²(n+1)²}{4} [/mm]

für alle n€N gilt

Mein Lösungsansatz:

[mm] \bruch{n³(n+1)³}{2³} [/mm] + (n+1)³ = [mm] \bruch{n²(n+1)²}{4} [/mm]


[mm] \bruch{n³(n+1)³}{8} [/mm] + [mm] \bruch{8(n+1)³}{8} [/mm] = [mm] \bruch{n²(n+1)²}{4} [/mm]

Weiter komme ich leider nicht !
Bitte um Hilfe !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vollstandige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Fr 10.11.2006
Autor: Karl_Pech

Hallo Rob64,


[willkommenmr]


> Zeigen sie mit Hilfe vollständiger Induktion, dass
>  
> [mm]\summe_{i=1}^{n}k³[/mm] = [mm]\bruch{n²(n+1)²}{4}[/mm]
>  
> für alle n€N gilt


Also ich nehme jetzt an, daß du den Induktionsanfang bereits gemacht hast?


>  Mein Lösungsansatz:
>  
> [mm]\bruch{n³(n+1)³}{2³}[/mm] + (n+1)³


Hier hast du dich mit den Exponenten vertan. Die Idee ist dennoch richtig. (Ich nehme an, du hast den Anfang des Induktionsschritts und die Anwendung der Induktionsannahme bewußt weggelassen?). Also setze das Obige mal fort aber mit richtigen Exponenten:


[mm]\frac{n^2(n+1)^2}{4} + (n+1)^3[/mm]


Klammere [mm](n+1)^2[/mm] aus. Danach klammere noch [mm]\tfrac{1}{4}[/mm] aus und wende die erste binomische Formel ("rückwärts") an.



Viele Grüße
Karl





Bezug
                
Bezug
Vollstandige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Fr 10.11.2006
Autor: Rob64


> (Ich nehme an, du hast den Anfang des Induktionsschritts > und die Anwendung der Induktionsannahme bewußt
> weggelassen?).  

Nein eigentlich nicht :-(


Mein Induktionsanfang:
(ich hoffe er ist richtig)

1³ + 2³ + 3³ + ..... + n³

n = 1    1³= [mm] \bruch{1(1+1)²}{4} [/mm]

         1³= [mm] \bruch{4}{4} [/mm]



[mm] \bruch{n²(n+1)²}{4}+ [/mm] (n+1)³

[mm] \bruch{n²(n+1)²}{4}+ \bruch{4(n+1)³}{4} [/mm]

[mm] \bruch{n^{4}+n²}{4}+ \bruch{4n³+4}{4} [/mm]


Weiter komme ich leider nicht
Bin mir nicht sicher ob ich richtig ausgeklammert habe
weil die Binomische Formel kann ich darauf noch nicht anwenden. Oder hab ich was übersehen ?



Bezug
                        
Bezug
Vollstandige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Fr 10.11.2006
Autor: leduart

Hallo rob

> Mein Induktionsanfang:
> (ich hoffe er ist richtig)
>  
> 1³ + 2³ + 3³ + ..... + n³
>  
> n = 1    1³= [mm]\bruch{1(1+1)²}{4}[/mm]
>  
> 1³= [mm]\bruch{4}{4}[/mm]

Jetzt käme: Induktionsvors:
[mm] \summe_{k=1}^{n}k^3=\bruch{n²(n+1)²}{4} [/mm]
daraus zu zeigen :
   [mm] \summe_{k=1}^{n+1}k^3=\bruch{(n+1)²(n+2)²}{4} [/mm]

> [mm]\bruch{n²(n+1)²}{4}+[/mm] (n+1)³

aus der In. Vors muss folgen
[mm] \bruch{n²(n+1)²}{4}+n+1^3=\bruch{(n+1)²(n+2)²}{4} [/mm]

>  
> [mm]\bruch{n²(n+1)²}{4}+ \bruch{4(n+1)³}{4}[/mm]
> [mm]\bruch{n^{4}+n²}{4}+ \bruch{4n³+4}{4}[/mm]

Ich nehme an, hier sollte ein Gleichheitszeichen zur nächsten Zeile stehen? dann wäre das falsch. es sieht so aus, als hättest du [mm] (n+1)^2=n^2+1 [/mm] Und [mm] (n+1)^3=n^3+1 [/mm] gerechnet, was schlimm wäre!
ausklammern nennt man, wenn man aus 2 Summanden denselben Faktor, hier [mm] (n+1)^2 [/mm] vor ne Klammer zieht!

also:
[mm]\bruch{n²(n+1)²}{4}+ \bruch{4(n+1)³}{4}=(n+1)^2*(\bruch{n^2}{4}+\bruch{4*(n+1)}{4})[/mm]

>

Jetzt solltest du durchkommen.
Wenn man sowas nicht sieht mit dem Ausklammern rechnet man einfach die linke und rechte Seite der Behauptung aus, d.h. alle Klammern auflösen .
[mm] \bruch{n²(n+1)²}{4}+n+1^3=\bruch{(n+1)²(n+2)²}{4} [/mm]
links ausrechnen, rechts ausrechnen muss dasselbe rauskommen! Dazu muss man die Induktionsbehauptung aber  erst mal hinschreiben!
Gruss leduart

Bezug
                                
Bezug
Vollstandige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Sa 11.11.2006
Autor: Rob64

Aufgabe
Zeigen sie mit Hilfe vollständiger Induktion, dass

[mm] \summe_{i=1}^{n}k³ [/mm] = [mm] \bruch{n²(n+1)²}{4} [/mm]

für alle n€N gilt


Zur besseren Übersicht die Rechnung von Anfang an.



Induktions Anfang:

1³ + 2³ + 3³ + ..... + n³

n = 1    1³= [mm] \bruch{1(1+1)²}{4} [/mm]

         1³= [mm] \bruch{4}{4} [/mm]


Induktionvors.

[mm] \summe_{i=1}^{n}k³= \bruch{n²(n+1)²}{4} [/mm]

Daraus zu Zeigen

[mm] \summe_{i=1}^{n+1}k³= \bruch{(n+1)²(n+2)²}{4} [/mm]

Daraus Folgt

[mm] \bruch{n²(n+1)²}{4} [/mm] + (n+1)³ = [mm] \bruch{(n+1)²(n+2)²}{4} [/mm]

Zitat: links ausrechnen, rechts ausrechnen muss dasselbe rauskommen

[mm] \bruch{n²(n²+2n+1)+4(n³+3n²+3n+1)}{4} [/mm] = [mm] \bruch{(n²+2n+1)(n²+4n+4)}{4} [/mm]

[mm] n^{4}+2n³+n²+4n³+12n²+12n+4 [/mm] = [mm] n^{4}+4n³+2n²+2n³+8n²+8n+n²+4n+4 [/mm]

12n²+7n = 8n²+12n

Was mach ich falsch ?
Warum werden sie Seiten nicht gleich ?
Versuche es schon seit Stunden ohne Erfolg




Bezug
                                        
Bezug
Vollstandige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Sa 11.11.2006
Autor: Karl_Pech

Hallo Rob64,


> [mm]\bruch{n^2(n+1)^2}{4}[/mm] + [mm] (n+1)^3 [/mm] = [mm]\bruch{(n+1)^2(n+2)^2}{4}[/mm]


Mache es dir nicht so schwer. Sondern benutze doch den Tipp, den ich dir gegeben habe. Schau dir den linken Term noch einmal genau an:


[mm]\frac{n^2(n+1)^2}{4} + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^{2+1}[/mm]


Nun benutze das Potenzgesetz [mm]a^{b+c} = a^ba^c[/mm]:


[mm]\frac{n^2(n+1)^2}{4} + (n+1)^{2+1} = \frac{n^2\textcolor{blue}{(n+1)^2}}{4} + \textcolor{blue}{(n+1)^2}(n+1)[/mm]


Und jetzt benutze das Distributivgesetz und die 1te binomische Formel...



Viele Grüße
Karl




Bezug
                                                
Bezug
Vollstandige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 So 12.11.2006
Autor: Rob64


>
> [mm]\frac{n^2(n+1)^2}{4} + (n+1)^{2+1} = \frac{n^2\textcolor{blue}{(n+1)^2}}{4} + \textcolor{blue}{(n+1)^2}(n+1)[/mm]
>  
>
> Und jetzt benutze das Distributivgesetz und die 1te
> binomische Formel...

Wenn ich das richtig verstehe soll ich jetzt die binomische Formel und das Distributivgesetz anwenden - das sieht dann bei mir so aus:

[mm] \bruch{n²(n²+2n+n)}{4}+(n²+2n+n)(n+1) [/mm]

Ist das soweit richtig?
Wie soll das jetzt weiter gehen?
Wenn ich die Klammern jetzt auflöse bekomme ich nichts sinnvolles heraus...

Sorry dass ich nerve, aber ich verstehs noch immer nicht

Bezug
                                                        
Bezug
Vollstandige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 So 12.11.2006
Autor: leduart

Hallo
Irgendwie rechnest du nie weiter, und ausgeklammert hast du auch nicht:

[mm]\frac{n^2(n+1)^2}{4} + (n+1)^{2+1} = \frac{n^2\textcolor{blue}{(n+1)^2}}{4} + \textcolor{blue}{(n+1)^2}(n+1)[/mm]
also [mm] =\bruch{(n+1)^2}{4}*(n^2+4n+4) [/mm]
und die letzte Klammer solltest du jetzt als [mm] (n+2)^2 [/mm] erkennen  und dann bist du fertig.
  
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de