www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vollständige Induktion
Vollständige Induktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Di 17.10.2006
Autor: Tobi15

Hallo,

ich habe eine Frage zum Beweis mit der Vollständigen Induktion.

wenn ich z.B. beweisen will das:

1²+2²+3³+.....n²=n(n+1)(2n+1) / 6

muss ich doch immer bei einer vollständigen indultion wie folgt vorgehen:

1. Induktionsanfang

A(1): 1= 1*(1+1) (2+1) / 6   ist wahr

2. Induktionsvorraussetzung A(n)

A(n): 1²+2²+3³+.....n²= n(n+1)(2n+1) / 6

3. Induktionsbehauptung  A(n+1)

A(n+1): 1²+2²+3³+.....n²+(n+1) = n+1(n+2)(2n+2)/6

4. Induktionsbeweis

Jetzt muss ich doch von 3. irgendwie auf 4. kommen damit gilt

A(n) => A(n+1)

Jetzt beginnt genau mein Problem ich weiss nicht genau wie ich die herleitung machen soll.

Gruß

Tobi

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Di 17.10.2006
Autor: ullim

Hi Tobi,

ich mach den Induktionsschritt,

[mm] A(n+1)=A(n)+(n+1)^2=\bruch{n(n+1)(2n+1)}{6}+(n+1)^2=\bruch{n+1}{6}[n(2n+1)+6(n+1)]=\bruch{n+1}{6}[2n^2+n+6n+6] [/mm]

also [mm] A(n+1)=\bruch{n+1}{6}[2n^2+7n+6]=\bruch{n+1}{6}(n+2)(2n+3) [/mm]

Damit ist alles bewiesen

mg ullim

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Di 17.10.2006
Autor: Tobi15

Hallo Ulli,

danke für die schnelle Antwort. Mir ist jedoch leider noch einiges unklar, kannst du bitte den ersten sowie den zweiten Umformungsschritt erklrären.
Warum ist die ganze Induktion eigentlich gültig, weil da (n+2) was vergeleichbar mit (n+1) steht oder warum. Auf wann ist die Induktion allgemein bewiesen?

Gruß

Tobi

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 17.10.2006
Autor: ullim

Hi Tobi,


1. Schritt

[mm] A(n+1)=A(n)+(n+1)^2 [/mm] (Definition deiner Summe)


2. Schritt

[mm] \bruch{n(n+1)(2n+1)}{6}+(n+1)^2 [/mm] (Einsetzten der Induktionsvoraussetzung für A(n) plus der letzte Term)


3. Schritt

[mm] \bruch{n+1}{6}[n(2n+1)+6(n+1)] [/mm] (Ausklammern von [mm] \bruch{n+1}{6}) [/mm]


4. Schritt

[mm] \bruch{n+1}{6}[2n^2+n+6n+6] [/mm] (Ausmultiplizieren)


5. Schritt

also [mm] A(n+1)=\bruch{n+1}{6}[2n^2+7n+6] [/mm] (Zusammenfassen des letzten Terms)


6. Schritt

[mm] \bruch{n+1}{6}(n+2)(2n+3) [/mm] (Umformen des letzten Terms)


Gültig ist die Induktion aus folgendem Grund:

Für A(n) soll gelten

[mm] A(n)=\bruch{n(n+1)(2n+1)}{6} [/mm] also muss für

[mm] A(n+1)=\bruch{(n+1)((n+1)+1)(2(n+1)+1)}{6}=\bruch{(n+1)(n+2)(2n+3)}{6} [/mm] gelten

mfg ullim


Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Di 17.10.2006
Autor: Tobi15

Hallo ullim,

zum 3. Schritt sind sie durch das ausklammern von n+1/6 gekommen.
Aber wenn ich diesen Schritt zurück ausmultipliziere, dann komme ich doch auf
n² da (n+1*n...) oder nicht?

Sonst ist alles weitere klar

MFG

Timon

Bezug
                                        
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Di 17.10.2006
Autor: Tobi15

Hallo,

habe noch eine zweite Frage die Umformung unter Schritt 6. ist mir auch nicht so ganz klar wie man von [2n²+7n+6] auf (n+2)(2n+3) kommt.

Mfg

Tobi

Bezug
                                                
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Di 17.10.2006
Autor: ullim


> Hallo,
>  
> habe noch eine zweite Frage die Umformung unter Schritt 6.
> ist mir auch nicht so ganz klar wie man von [2n²+7n+6] auf
> (n+2)(2n+3) kommt.
>  

einfach durch ausmultiplizieren bestätigen

> Mfg
>  
> Tobi

Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Di 17.10.2006
Autor: ullim


> Hallo ullim,
>  
> zum 3. Schritt sind sie durch das ausklammern von n+1/6
> gekommen.

Ich habe [mm] \bruch{n+1}{6} [/mm] ausgeklammert und nicht [mm] n+\bruch{1}{6}, [/mm] hilft das weiter?

>  Aber wenn ich diesen Schritt zurück ausmultipliziere, dann
> komme ich doch auf
> n² da (n+1*n...) oder nicht?
>  
> Sonst ist alles weitere klar
>  
> MFG
>  
> Timon

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de