www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Vektorrechnen
Vektorrechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Do 19.02.2009
Autor: Dinker

Guten Nachmittag

[Dateianhang nicht öffentlich]

Ich bekunde bei dieser Aufgabe gerade gewisse Schwierigkeiten, wäre deshalb sehr dankbar um Hilfe

Aufgabe b
Also ich rechne mal eine Hilfsgerade aus, die rechtwinklig zu [mm] \overrightarrow{AM} [/mm] steht und die Strecke [mm] \overline{AM} [/mm] genau in der mitte schneidet.
Ich habe mich entschieden in Parameterform zu rechnen

Nun rechne ich den Mittelpunkt P von  [mm] \overline{AM} [/mm] aus.
P = (-1/0.5)

Nun berechne ich die Normale auf den Vektor
[mm] \overrightarrow{AM} [/mm]

[mm] \overrightarrow{r_{t}}= \vektor{-1 \\ 0.5} [/mm] + t [mm] \vektor{2 \\ -2} [/mm]

Nun muss ich die Gerade s noch in Parameterform umwandeln
[mm] \overrightarrow{r_{z}}= [/mm] = [mm] \vektor{1 \\ 1.5} [/mm] + z [mm] \vektor{2 \\ 2} [/mm]

Nun gilt: [mm] \overrightarrow{r_{z}}= \overrightarrow{r_{t}} [/mm]

(1) -1 + 2t = 1 + 2z
(2) 0.5 - 2t = 1.5 + 2z

(1) t = 1
(2) -1.5 = 1.5 + 2z
z = -1.5

setz ich nun bei [mm] \overrightarrow{r_{z}} [/mm] ein

Gesuchte Punkt = (-2/-1.5)

Stimmt das so?

---------------------------------------------------------------------------------------

Aufgabe c
Hier bin ich mir absolut nicht sicher, ob ich das richtig mache.
Ich hätte hier mal das Stichwort Skalarprodukt genannt

dort wo sich die beiden Geraden im 90° Winkel schneiden ist mein Punkt S(x/y)


[mm] \overrightarrow{SM} [/mm] * [mm] \overrightarrow{SA} [/mm] = 0

[mm] \vektor{-4 - x\\ 4 - y} [/mm] * [mm] \vektor{2 - x\\ -3 -y} [/mm] = 0

(1) (-4 - x) * (2 - x) + (4 - y) * (-3 -y) = 0

Dann ist der Abstand von M 2

(2) (-4 [mm] -x)^{2} [/mm] + (4 [mm] -y)^{2} [/mm] = 4

(1) [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + 2x -y -20 = 0
(2) [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + 8x -8y + 28 = 0
------------------------------------------------
-6x + 7y - 48 = 0    [mm] \to [/mm] x = [mm] \bruch{7}{6}y [/mm] -8  bsp. bei (1) einsetzen

[mm] \bruch{85}{36} y^{2} [/mm] - [mm] \bruch{52}{3}y [/mm] -36 = 0

[mm] y_{1} [/mm] = 9.03
[mm] y_{2} [/mm] = -1.69

Nun korrespondiert dies überhaupt nicht mit meiner Zeichnung

Besten Dank
Gruss Dinker

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.














Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Vektorrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Do 19.02.2009
Autor: abakus


> Guten Nachmittag
>  
> [Dateianhang nicht öffentlich]
>
> Ich bekunde bei dieser Aufgabe gerade gewisse
> Schwierigkeiten, wäre deshalb sehr dankbar um Hilfe
>  
> Aufgabe b
>  Also ich rechne mal eine Hilfsgerade aus, die rechtwinklig
> zu [mm]\overrightarrow{AM}[/mm] steht und die Strecke [mm]\overline{AM}[/mm]
> genau in der mitte schneidet.
>  Ich habe mich entschieden in Parameterform zu rechnen
>  
> Nun rechne ich den Mittelpunkt P von  [mm]\overline{AM}[/mm] aus.
>  P = (-1/0.5)
>  

Hallo, der Vektor [mm]\overrightarrow{AM}[/mm] selbst ist [mm] \vektor{-6 \\7} [/mm]
Ein dazu senkrechter Vektor ist [mm] \vektor{7 \\6}. [/mm] Du musst durch P eine Gerade mit desem Richtungsvektor legen.
Gruß Abakus

> Nun berechne ich die Normale auf den Vektor
> [mm]\overrightarrow{AM}[/mm]
>  
> [mm]\overrightarrow{r_{t}}= \vektor{-1 \\ 0.5}[/mm] + t [mm]\vektor{2 \\ -2}[/mm]
>  
> Nun muss ich die Gerade s noch in Parameterform umwandeln
>  [mm]\overrightarrow{r_{z}}=[/mm] = [mm]\vektor{1 \\ 1.5}[/mm] + z [mm]\vektor{2 \\ 2}[/mm]
>  
> Nun gilt: [mm]\overrightarrow{r_{z}}= \overrightarrow{r_{t}}[/mm]
>  
> (1) -1 + 2t = 1 + 2z
>  (2) 0.5 - 2t = 1.5 + 2z
>  
> (1) t = 1
>  (2) -1.5 = 1.5 + 2z
>  z = -1.5
>  
> setz ich nun bei [mm]\overrightarrow{r_{z}}[/mm] ein
>  
> Gesuchte Punkt = (-2/-1.5)
>  
> Stimmt das so?

Teste doch einfach, ob die beiden Streckenlänegen dann gleich sind.

>
> ---------------------------------------------------------------------------------------
>  
> Aufgabe c
>  Hier bin ich mir absolut nicht sicher, ob ich das richtig
> mache.
>  Ich hätte hier mal das Stichwort Skalarprodukt genannt
>  
> dort wo sich die beiden Geraden im 90° Winkel schneiden ist
> mein Punkt S(x/y)
>  
>
> [mm]\overrightarrow{SM}[/mm] * [mm]\overrightarrow{SA}[/mm] = 0
>  
> [mm]\vektor{-4 - x\\ 4 - y}[/mm] * [mm]\vektor{2 - x\\ -3 -y}[/mm] = 0
>  
> (1) (-4 - x) * (2 - x) + (4 - y) * (-3 -y) = 0
>
> Dann ist der Abstand von M 2
>  
> (2) (-4 [mm]-x)^{2}[/mm] + (4 [mm]-y)^{2}[/mm] = 4
>  
> (1) [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + 2x -y -20 = 0
>  (2) [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + 8x -8y + 28 = 0
>  ------------------------------------------------
>  -6x + 7y - 48 = 0    [mm]\to[/mm] x = [mm]\bruch{7}{6}y[/mm] -8  bsp. bei
> (1) einsetzen
>  
> [mm]\bruch{85}{36} y^{2}[/mm] - [mm]\bruch{52}{3}y[/mm] -36 = 0
>  
> [mm]y_{1}[/mm] = 9.03
>  [mm]y_{2}[/mm] = -1.69
>  
> Nun korrespondiert dies überhaupt nicht mit meiner
> Zeichnung
>  
> Besten Dank
>  Gruss Dinker
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
>
>
>
>
>
>
>
>
>
>
>  


Bezug
        
Bezug
Vektorrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Do 19.02.2009
Autor: weduwe


> Guten Nachmittag
>  
> [Dateianhang nicht öffentlich]
>
> Ich bekunde bei dieser Aufgabe gerade gewisse
> Schwierigkeiten, wäre deshalb sehr dankbar um Hilfe
>  
> Aufgabe b
>  Also ich rechne mal eine Hilfsgerade aus, die rechtwinklig
> zu [mm]\overrightarrow{AM}[/mm] steht und die Strecke [mm]\overline{AM}[/mm]
> genau in der mitte schneidet.
>  Ich habe mich entschieden in Parameterform zu rechnen
>  
> Nun rechne ich den Mittelpunkt P von  [mm]\overline{AM}[/mm] aus.
>  P = (-1/0.5)
>  
> Nun berechne ich die Normale auf den Vektor
> [mm]\overrightarrow{AM}[/mm]
>  
> [mm]\overrightarrow{r_{t}}= \vektor{-1 \\ 0.5}[/mm] + t [mm]\vektor{2 \\ -2}[/mm]
>  
> Nun muss ich die Gerade s noch in Parameterform umwandeln
>  [mm]\overrightarrow{r_{z}}=[/mm] = [mm]\vektor{1 \\ 1.5}[/mm] + z [mm]\vektor{2 \\ 2}[/mm]
>  
> Nun gilt: [mm]\overrightarrow{r_{z}}= \overrightarrow{r_{t}}[/mm]
>  
> (1) -1 + 2t = 1 + 2z
>  (2) 0.5 - 2t = 1.5 + 2z
>  
> (1) t = 1
>  (2) -1.5 = 1.5 + 2z
>  z = -1.5
>  
> setz ich nun bei [mm]\overrightarrow{r_{z}}[/mm] ein
>  
> Gesuchte Punkt = (-2/-1.5)
>  
> Stimmt das so?
>
> ---------------------------------------------------------------------------------------
>  
> Aufgabe c
>  Hier bin ich mir absolut nicht sicher, ob ich das richtig
> mache.
>  Ich hätte hier mal das Stichwort Skalarprodukt genannt
>  
> dort wo sich die beiden Geraden im 90° Winkel schneiden ist
> mein Punkt S(x/y)
>  
>
> [mm]\overrightarrow{SM}[/mm] * [mm]\overrightarrow{SA}[/mm] = 0
>  
> [mm]\vektor{-4 - x\\ 4 - y}[/mm] * [mm]\vektor{2 - x\\ -3 -y}[/mm] = 0
>  
> (1) (-4 - x) * (2 - x) + (4 - y) * (-3 -y) = 0
>
> Dann ist der Abstand von M 2
>  
> (2) (-4 [mm]-x)^{2}[/mm] + (4 [mm]-y)^{2}[/mm] = 4
>  
> (1) [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + 2x -y -20 = 0
>  (2) [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + 8x -8y + 28 = 0
>  ------------------------------------------------
>  -6x + 7y - 48 = 0    [mm]\to[/mm] x = [mm]\bruch{7}{6}y[/mm] -8  bsp. bei
> (1) einsetzen


bis hierher stimmt es

[mm] y_1=4.94 [/mm] und [mm] y_2=2.4 [/mm]




>  
> [mm]\bruch{85}{36} y^{2}[/mm] - [mm]\bruch{52}{3}y[/mm] -36 = 0
>  
> [mm]y_{1}[/mm] = 9.03
>  [mm]y_{2}[/mm] = -1.69
>  
> Nun korrespondiert dies überhaupt nicht mit meiner
> Zeichnung
>  
> Besten Dank
>  Gruss Dinker
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>

aufgabe b)die gerade durch den mittelpunkt von AM : [mm] \vec{x}=\vektor{-1\\0.5}+t\cdot\vektor{7\\6} [/mm]

eingesetzt in s liefert [mm]t=1\to S(6/6.5)[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de