www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Urbild abg., ZWE,stettig
Urbild abg., ZWE,stettig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urbild abg., ZWE,stettig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Mi 06.05.2015
Autor: sissile

Aufgabe
Zeige [mm] f:\IR \rightarrow \IR [/mm] ist  genau dann stetig wenn f die Zwischenwerteigenschaft erfüllt und die Urbildmenge jedes Punktes abgeschlossen ist.

Hallo

[mm] \Rightarrow [/mm]
ZWE erfüllt ist nach ANA1 klar.

Sei y [mm] \in \IR [/mm] beliebig aber fest, ZZ.: [mm] f^{-1}(y)=\{x \in \IR| f(x)=y\} [/mm] abgeschlossen.
Sei x [mm] \in \IR \setminus [f^{-1} [/mm] (y)] (d.h. f(x) [mm] \not= [/mm] f(y)), so genügt ZZ: [mm] \exists \delta>0: U_{\delta} [/mm] (x) [mm] \subseteq \IR \setminus [f^{-1} [/mm] (y)]
Indirekt angenommen ein solches [mm] \delta [/mm] existiert nicht: [mm] \forall \delta>0: \exists x_0 [/mm] mit [mm] |x-x_0|<\delta: f(x_0)= f^{-1} [/mm] (y)
Insebesondere für [mm] \delta:=1/n \exists x_n \in U_{1/n} [/mm] (x): [mm] f(x_n)=f^{-1}(y). [/mm]
Nach Konstruktion [mm] x_n \rightarrow [/mm] x [mm] (n\rightarrow \infty). [/mm]
Wegen der Stetigkeit würde folgen [mm] \lim_{n\rightarrow \infty} f(x_n)=f(x) [/mm]
wobei [mm] f(x)\not= [/mm] f(y).
Jedoch die  konstante Funktion [mm] (f(x_n))_{n\in\IN} [/mm] muss gegen [mm] f^{-1} [/mm] (y) konvergieren. WID.

[mm] \Leftarrow [/mm]
Überlegungen, die ich versuche zu einen Beweis zu formulieren:
Sei [mm] \epsilon>0 [/mm] beliebig. Da die Urbildmenge jedes Punktes abgeschlossen ist folgt [mm] D_1=\IR \setminus f^{-1} (\{f(x_0)+\epsilon\}) [/mm] offen, d.h. [mm] \forall [/mm] x [mm] \in D_1: \exists \delta_1 [/mm] so dass [mm] \forall \overline{x} [/mm] mit [mm] |x-\overline{x}|<\delta_1 [/mm] folgt [mm] f(\overline{x}) \not= f(x_0) [/mm] + [mm] \epsilon. [/mm]
Analog [mm] D_2=\IR \setminus f^{-1} (\{f(x_0)-\epsilon\}) [/mm] offen, d.h. [mm] \forall [/mm] x [mm] \in D_2: \exists \delta_2 [/mm] so dass [mm] \forall \overline{x} [/mm] mit [mm] |x-\overline{x}|<\delta_2 [/mm] folgt [mm] f(\overline{x}) \not= f(x_0) [/mm] + [mm] \epsilon. [/mm]
Wenn man nun das Minimum wählt: min( [mm] \delta_1, \delta_2)=: \delta, [/mm] erfüllt dies:
[mm] (\*) \forall [/mm] x [mm] \in D_1 \cup D_2: \exists \delta [/mm] so dass [mm] \forall \overline{x} [/mm] mit [mm] |x-\overline{x}|<\delta [/mm] folgt [mm] f(\overline{x}) \not\in \{ f(x_0) + \epsilon, f(x_0) - \epsilon \} [/mm]

Angenommen [mm] f(\overline{x}) [/mm] außerhalb von [mm] [f(x_0)-\epsilon,f(x_0) [/mm] + [mm] \epsilon]. [/mm]
Fall 1) [mm] f(x_0) [/mm] < [mm] f(x_0)+\epsilon [/mm] < [mm] f\overline{x}) [/mm]
Nach ZWE [mm] \exists [/mm] s [mm] \in [x_0,\overline{x}]: f(s)=f(x_0)+\epsilon [/mm]
Das ist aber nun ein Widerspruch zu [mm] (\*) [/mm] wenn ich es richtig sehe?
Fall 2) [mm] f\overline(x)) [/mm] < [mm] f(x_0) [/mm] - [mm] \epsilon [/mm]  < [mm] f(x_0) [/mm]
Nach ZWE [mm] \exists [/mm] s [mm] \in [\overline{x},x_0]: f(s)=f(x_0)-\epsilon [/mm]
Widerspruch zu [mm] (\*) [/mm]

Daraus folgt [mm] f(\overline{x}) \in (f(x_0) [/mm] + [mm] \epsilon, f(x_0) [/mm] - [mm] \epsilon), [/mm] d.h. [mm] f(U_{\delta} (x_0)) \in U_{\epsilon} (f(x_0)) [/mm]
[mm] \Box [/mm]

LG,
sissi

        
Bezug
Urbild abg., ZWE,stettig: Rück-Richtung
Status: (Antwort) fertig Status 
Datum: 19:28 Do 07.05.2015
Autor: tobit09

Hallo sissile!


Ich habe mir bisher nur die (interessantere) Rück-Richtung angeschaut.

Sie sieht bei dir sehr gut aus! [ok]

Daher nur kleinere Anmerkungen:


> Zeige [mm]f:\IR \rightarrow \IR[/mm] ist  genau dann stetig wenn f
> die Zwischenwerteigenschaft erfüllt und die Urbildmenge
> jedes Punktes abgeschlossen ist.


> [mm]\Leftarrow[/mm]
>  Überlegungen, die ich versuche zu einen Beweis zu
> formulieren:
>  Sei [mm]\epsilon>0[/mm] beliebig.

Führe auch [mm] $x_0$ [/mm] mit der Formulierung "Sei [mm] $x_0\in\IR$" [/mm] ein.

> Da die Urbildmenge jedes Punktes
> abgeschlossen ist folgt [mm]D_1=\IR \setminus f^{-1} (\{f(x_0)+\epsilon\})[/mm]
> offen, d.h. [mm]\forall[/mm] x [mm]\in D_1: \exists \delta_1[/mm] so dass
> [mm]\forall \overline{x}[/mm] mit [mm]|x-\overline{x}|<\delta_1[/mm] folgt
> [mm]f(\overline{x}) \not= f(x_0)[/mm] + [mm]\epsilon.[/mm]
>  Analog [mm]D_2=\IR \setminus f^{-1} (\{f(x_0)-\epsilon\})[/mm]
> offen, d.h. [mm]\forall[/mm] x [mm]\in D_2: \exists \delta_2[/mm] so dass
> [mm]\forall \overline{x}[/mm] mit [mm]|x-\overline{x}|<\delta_2[/mm] folgt
> [mm]f(\overline{x}) \not= f(x_0)[/mm] + [mm]\epsilon.[/mm]

(Tippfehler: Am Ende muss es - statt + heißen.)

>  Wenn man nun das Minimum wählt: min( [mm]\delta_1, \delta_2)=: \delta,[/mm]
> erfüllt dies:
>  [mm](\*) \forall[/mm] x [mm]\in D_1 \cup D_2: \exists \delta[/mm] so dass
> [mm]\forall \overline{x}[/mm] mit [mm]|x-\overline{x}|<\delta[/mm] folgt
> [mm]f(\overline{x}) \not\in \{ f(x_0) + \epsilon, f(x_0) - \epsilon \}[/mm]

Es muss [mm] $D_1\cap D_2$ [/mm] statt [mm] $D_1\cup D_2$ [/mm] heißen.


Für das Folgende muss erklärt werden, was [mm] $\overline{x}$ [/mm] bezeichnen soll:
"Sei [mm] $\overline{x}\in U_\delta(x_0)$." [/mm]

Entscheidend ist noch die Beobachtung, dass [mm] $x_0\in D_1\cap D_2$ [/mm] gilt, also (*) speziell auf [mm] $x:=x_0$ [/mm] anwendbar ist.

Insbesondere gilt [mm] $f(\overline{x})\notin\{f(x_0)+\epsilon,f(x_0)-\epsilon\}$ [/mm] (für unser eben eingeführtes [mm] $\overline{x}$). [/mm]

> Angenommen [mm]f(\overline{x})[/mm] außerhalb von
> [mm][f(x_0)-\epsilon,f(x_0)[/mm] + [mm]\epsilon].[/mm]
> Fall 1) [mm]f(x_0)[/mm] < [mm]f(x_0)+\epsilon[/mm] < [mm]f\overline{x})[/mm]
>  Nach ZWE [mm]\exists[/mm] s [mm]\in [x_0,\overline{x}]: f(s)=f(x_0)+\epsilon[/mm]

Es ist nicht notwendig [mm] $x_0<\overline{x}$; [/mm] es könnte auch [mm] $x_0>\overline{x}$ [/mm] gelten.
Ersetze daher [mm] $\exists s\in[x_0,\overline{x}]$ [/mm] durch "es existiert ein [mm] $s\in\IR$, [/mm] das zwischen [mm] $x_0$ [/mm] und $x$ liegt mit der Eigenschaft...".

> Das ist aber nun ein Widerspruch zu [mm](\*)[/mm] wenn ich es
> richtig sehe?

Ja.
Wegen [mm] $\overline{x}\in U_\delta(x_0)$ [/mm] gilt auch [mm] $s\in U_\delta(x_0)$. [/mm]
Nach (*) angewandt auf [mm] $x:=x_0$ [/mm] gilt somit [mm] $f(s)\notin\{f(x_0)+\epsilon,f(x_0)-\epsilon\}$. [/mm]

>  Fall 2) [mm]f\overline(x))[/mm] < [mm]f(x_0)[/mm] - [mm]\epsilon[/mm]  < [mm]f(x_0)[/mm]
>  Nach ZWE [mm]\exists[/mm] s [mm]\in [\overline{x},x_0]: f(s)=f(x_0)-\epsilon[/mm]
>  
> Widerspruch zu [mm](\*)[/mm]

Fall 2 ist analog zu Fall 1 und es gelten die gleichen Anmerkungen.


> Daraus folgt [mm]f(\overline{x}) \in (f(x_0)[/mm] + [mm]\epsilon, f(x_0)[/mm]
> - [mm]\epsilon),[/mm] d.h. [mm]f(U_{\delta} (x_0)) \in U_{\epsilon} (f(x_0))[/mm]

Am Schluss muss es [mm] $\subseteq$ [/mm] statt [mm] $\in$ [/mm] heißen.


Viele Grüße
Tobias


Bezug
        
Bezug
Urbild abg., ZWE,stettig: Hin-Richtung
Status: (Antwort) fertig Status 
Datum: 19:25 Fr 08.05.2015
Autor: tobit09

Jetzt zur Hin-Richtung, die du ebenfalls im Wesentlichen richtig hast [ok]:


> Zeige [mm]f:\IR \rightarrow \IR[/mm] ist  genau dann stetig wenn f
> die Zwischenwerteigenschaft erfüllt und die Urbildmenge
> jedes Punktes abgeschlossen ist.


> [mm]\Rightarrow[/mm]
>  ZWE erfüllt ist nach ANA1 klar.

Ja (Zwischenwertsatz).

> Sei y [mm]\in \IR[/mm] beliebig aber fest, ZZ.: [mm]f^{-1}(y)=\{x \in \IR| f(x)=y\}[/mm]
> abgeschlossen.

Ja.

>  Sei x [mm]\in \IR \setminus [f^{-1}[/mm] (y)] (d.h. f(x) [mm]\not=[/mm]
> f(y)), so genügt ZZ: [mm]\exists \delta>0: U_{\delta}[/mm] (x)
> [mm]\subseteq \IR \setminus [f^{-1}[/mm] (y)]

Ja.

> Indirekt angenommen ein solches [mm]\delta[/mm] existiert nicht:
> [mm]\forall \delta>0: \exists x_0[/mm] mit [mm]|x-x_0|<\delta: f(x_0)= f^{-1}[/mm]
> (y)

Am Ende muss es [mm] $f(x_0)\in f^{-1}(y)$ [/mm] oder [mm] $f(x_0)=y$ [/mm] heißen.

>  Insebesondere für [mm]\delta:=1/n \exists x_n \in U_{1/n}[/mm]
> (x): [mm]f(x_n)=f^{-1}(y).[/mm]

Gleicher (Tipp?)Fehler am Ende.

>  Nach Konstruktion [mm]x_n \rightarrow[/mm] x [mm](n\rightarrow \infty).[/mm]

Ja, das lässt sich leicht nachprüfen.

> Wegen der Stetigkeit würde folgen [mm]\lim_{n\rightarrow \infty} f(x_n)=f(x)[/mm]
>  
> wobei [mm]f(x)\not=[/mm] f(y).

Ja.

>  Jedoch die  konstante Funktion

Besser: "Folge" statt "Funktion".

[mm](f(x_n))_{n\in\IN}[/mm] muss

> gegen [mm]f^{-1}[/mm] (y) konvergieren. WID.

Sie konvergiert gegen y, nicht gegen [mm] $f^{-1}(y)$. [/mm]


Eine einfachere Alternative für die Hinrichtung:
Nutze das Kriterium, dass eine Teilmenge [mm] $F\subseteq \IR$ [/mm] genau dann abgeschlossen ist, wenn für jede in Folge [mm] $(x_n)_{n\in\IN}$ [/mm] von Elementen aus F, die gegen ein [mm] $x\in\IR$ [/mm] konvergiert, auch [mm] $x\in [/mm] F$ gilt.

Falls schon bekannt ist, dass Abbildungen zwischen topologischen Räumen genau dann stetig sind, wenn Urbilder abgeschlossener Mengen abgeschlossen sind, ist für die Hinrichtung sogar fast nichts zu tun.


Viele Grüße
Tobias

Bezug
                
Bezug
Urbild abg., ZWE,stettig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:12 So 10.05.2015
Autor: sissile

Vielen vielen Dank.
Freut mich, dass du dir meinen Beweis so genau angeschaut hast.

Danke der Alternativbeweis ist natürlich ein Einzeiler. Danke!

LG,
sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de