www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Transformation der Delta-Distr
Transformation der Delta-Distr < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation der Delta-Distr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Mi 24.10.2012
Autor: adefg

Aufgabe
Ist T eine Temperierte Distribution, so wird ihre Fourier-Transformation durch die Gleichung [mm] \hat T(\hat\phi) [/mm] = [mm] T(\phi) \forall\phi\in\mathcal [/mm] S (Raum der schnell fallenden Funktionen) definiert.
Zeigen Sie mit dieser Definition, dass für die Deltadistribution [mm] {\hat\delta} [/mm] = [mm] \frac{1}{2\pi} [/mm] und [mm] {\hat 1} =\delta [/mm] gilt.

Hallo,
ich habe einige Fragen zu obiger Aufgabe:
1. Kann es sein, dass die Definition so wie sie in der Aufgabe gegeben ist falsch ist? Die Aufgabe stammt aus einem Physik-Übungsblatt, ich kenne die Definition für Distributionen aber nur als [mm] \hat T(\phi) [/mm] = [mm] T(\hat\phi). [/mm] Oder ist das äquivalent?

2. Selbiges Übungsblatt definiert die Fourier-Transformation als [mm] {\hat f}: k\mapsto\int_{-\infty}^\infty \exp(-ikx) [/mm] f(x)dx.
Kann dann überhaupt folgen, dass [mm] {\hat\delta} [/mm] = [mm] \frac{1}{2\pi} [/mm] ?
Es gilt doch [mm] \hat\delta [/mm] = [mm] \int_{-\infty}^\infty \delta(x)\exp(-ikx)dx [/mm] = [mm] \exp(-ik\cdot [/mm] 0)=1.

Genauso erhalte ich mit der Def. [mm] \langle\hat\delta,\phi\rangle [/mm] = [mm] \langle\delta,\hat\phi\rangle, [/mm] dass
[mm] \langle\hat\delta,\phi\rangle [/mm] = [mm] \delta\left(\int_{-\infty}^\infty \phi(x)\exp(-ikx) dx\right) [/mm] = [mm] \langle 1,\phi\rangle, [/mm] also [mm] \hat\delta [/mm] = 1.

Kann da vielleicht wer etwas Licht ins Dunkel bringen? :)

        
Bezug
Transformation der Delta-Distr: Signaltheorie
Status: (Antwort) fertig Status 
Datum: 17:34 Do 25.10.2012
Autor: Infinit

Hallo adefg,
aus der Signaltheorie kenne ich auch nur den Zusammenhang, dass die Deltadistribution im Zeitbereich zu einer glatten 1 im Frequenzbereich führt. Der Faktor [mm] \bruch{1}{2 \pi} [/mm] ist der Normierungsfaktor für die Rücktransformation. Was es noch gibt, ist, dass man diesen Normierungsfaktor gleichmäßig auf die Hin- und die Rücktransformation aufteilt. Entsprechend taucht dann bei beiden Transformationen ein Faktor [mm] \wurzel{\bruch{1}{2 \pi}} [/mm] auf.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de