www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Teilverhältnis kollin. Punkte
Teilverhältnis kollin. Punkte < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilverhältnis kollin. Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:25 Mo 21.05.2012
Autor: imagemixer

Hallo und guten Abend,
ich habe eine Frage zu einer Gleichung. Gegeben sind 3 Punkte a,b,c auf einer Geraden und für deren Teilverhältnisse soll gelten:
[mm] T(b,c;a)\*T(c,a;b)\*T(a,b;c) [/mm] = -1

Ich habe versucht, ausgehend von
[mm] \vec{ab}=t\*\vec{bc} [/mm]
eine solche Gleichung für alle 3 Teilverhältnisse (s.o.) darzustellen.
Bei mir würde es dann heißen:
[mm] T(b,c;a)\*T(c,a;b)\*T(a,b;c) [/mm]
= [mm] \bruch{b-a}{c-b} \* \bruch{a-b}{c-a} \* \bruch{c-a}{b-c} [/mm]

[mm] =\bruch{(a-b)^2}{(b-c)^2}, [/mm] wobei a,b,c für die Ortsvektoren der Punkte a,b,c auf der Geraden stehen.

Soll ich vielleicht ganz anders ansetzen oder wie muss ich hier fortfahren ?

Danke und viele Grüße

        
Bezug
Teilverhältnis kollin. Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Di 22.05.2012
Autor: Leopold_Gast

Ich erhalte nicht -1, sondern 1 als Produktwert der Teilverhältnisse.
Ich verstehe dein Vorgehen nicht. Du kannst doch Vektoren nicht dividieren.

Ich vermute, daß du unter [mm]T(b,c;a)[/mm] das Teilverhältnis meinst, unter dem [mm]a[/mm] die Strecke von [mm]b[/mm] nach [mm]c[/mm] teilt. Nennen wir dieses einmal [mm]\tau_1[/mm]. Wenn also

[mm]a-b = \lambda \cdot (c-b) \, , \ \ c-a = \mu \cdot (c-b)[/mm]

gelten, dann ist

[mm]\tau_1 = \frac{\lambda}{\mu}[/mm]

Die Skalare [mm]\lambda[/mm] und [mm]\mu[/mm] erfüllen [mm]\lambda + \mu = 1[/mm].

Jetzt zum Teilverhältnis [mm]T(c,a;b)[/mm], unter dem [mm]b[/mm] die Strecke von [mm]c[/mm] nach [mm]a[/mm] teilt. Ich nenne dieses [mm]\tau_2[/mm]. Wir müssen [mm]b-c[/mm] und [mm]a-b[/mm] als Vielfache von [mm]a-c[/mm] ausdrücken (die Reihenfolgen in den Differenzen sind hier wichtig). Aus der zweiten Gleichung oben erhält man

[mm]b-c = \frac{1}{\mu} \cdot (a-c)[/mm]

Und aus beiden Gleichungen oben folgt:

[mm]a-b = \lambda \cdot (c-b) = \lambda \cdot \frac{1}{\mu} \cdot (c-a) = - \frac{\lambda}{\mu} \cdot (a-c)[/mm]

Folglich gilt:

[mm]\tau_2 = \frac{\frac{1}{\mu}}{- \frac{\lambda}{\mu}} = - \frac{1}{\lambda}[/mm]

Und jetzt berechne das Teilverhältnis [mm]\tau_3 = T(a,b;c)[/mm], unter dem [mm]c[/mm] die Strecke von [mm]a[/mm] nach [mm]b[/mm] teilt. Du mußt also zunächst [mm]c-a[/mm] und [mm]b-c[/mm] als Vielfache von [mm]b-a[/mm] ausdrücken.
Zum Schluß kannst du dann [mm]\tau_1 \cdot \tau_2 \cdot \tau_3[/mm] berechnen. Wie gesagt, ich erhalte 1 als Produktwert. Wenn da -1 herauskommen soll, liegt es vielleicht daran, daß du das Teilverhältnis anders definiert hast. Ohne Kenntnis dieser Definition kann man allerdings nicht weiterhelfen.

Bezug
                
Bezug
Teilverhältnis kollin. Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Di 22.05.2012
Autor: imagemixer

Das was Du geschrieben hast, kann ich sehr gut nachvollziehn, vielen Dank.
Definition des Teilverhältnis' ist bei uns:
Wenn man die Gleichungen (von Dir):
$ a-b = [mm] \lambda \cdot [/mm] (c-b) [mm] \, [/mm] , \ \ c-a = [mm] \mu \cdot [/mm] (c-b) $
hat,
teilt a die Strecke [mm] \overline{bc} [/mm]
in $ [mm] \tau_1 [/mm] = - [mm] \frac{\lambda}{\mu} [/mm] $
(negatives Vorzeichen also).

Eine kleine Frage vielleicht: Warum ist denn gerade das Teilverhältnis [mm] -\bruch{\lambda}{\mu} [/mm] und nicht [mm] -\bruch{\mu}{\lambda} [/mm] ?

Bezug
                        
Bezug
Teilverhältnis kollin. Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Di 22.05.2012
Autor: Leopold_Gast

Das negative Vorzeichen wundert mich etwas. Nehmen wir einmal an, [mm]a[/mm] möge zwischen [mm]b[/mm] und [mm]c[/mm] liegen, eine Einheit von [mm]b[/mm] und zwei Einheiten von [mm]c[/mm] entfernt, dann gälte

[mm]a-b = \frac{1}{3} \cdot (c-b) \, , \ \ c-a = \frac{2}{3} \cdot (c-b)[/mm]

Nach meiner Definition wäre das Teilverhältnis [mm]\tau = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} = 1:2[/mm]. In der Geometrie sagt man: [mm]A[/mm] teilt die Strecke [mm]BC[/mm] im Verhältnis 1:2. Die Reihenfolge der Punkte ist hier wichtig. Streng genommen geht es nicht um bloße Strecken, sondern um gerichtete Strecken. Wenn man dieselbe Situation mit der Strecke [mm]CB[/mm] ausdrückt, muß man sagen: [mm]A[/mm] teilt [mm]CB[/mm] im Verhältnis 2:1.
Das Teilverhältnis ist positiv, wenn der Teilungspunkt im Innern der Strecke liegt, und negativ andernfalls. So kenne ich das jedenfalls.

Warum bei euch beim Teilverhältnis noch eine Vorzeichenänderung vorgenommen wird, weiß ich nicht. Vielleicht bekommen spätere Formeln dadurch ein handlicheres oder suggestiveres Format. Mit dieser zusätzlichen Vorzeichenänderung ist das Teilverhältnis negativ, wenn der Teilungspunkt im Innern der Strecke ist, und positiv andernfalls.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de