www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Teilbarkeit / g-adische Darst.
Teilbarkeit / g-adische Darst. < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit / g-adische Darst.: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:50 Di 27.05.2008
Autor: grenife

Aufgabe
Bestimmen Sie alle [mm] $g\in\mathbb{N}$, [/mm] für die [mm] $(111)_g$ [/mm] durch $7$ teilbar ist.

Hallo zusammen,

komme bei dieser Aufgabe an einer Stelle nicht weiter. Die Zahl [mm] $(111)_g$ [/mm] kann geschrieben werden als
[mm] $(111)_g=1+g+g^2=1+g(1+g)$. [/mm]
Somit müssen die natürlichen Zahlen $g$ bestimmt werden, für die $1+g(1+g)$ durch $7$ teilbar ist. Nur leider komme ich hier nicht weiter...wahrscheinlich sehe ich das Offensichtliche nicht.

Vielen Dank für Eure Hinweise und viele Grüße
Gregor

        
Bezug
Teilbarkeit / g-adische Darst.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Di 27.05.2008
Autor: angela.h.b.


> Bestimmen Sie alle [mm]g\in\mathbb{N}[/mm], für die [mm](111)_g[/mm] durch [mm]7[/mm]
> teilbar ist.
>  Hallo zusammen,
>  
> komme bei dieser Aufgabe an einer Stelle nicht weiter. Die
> Zahl [mm](111)_g[/mm] kann geschrieben werden als
> [mm](111)_g=1+g+g^2=1+g(1+g)[/mm].
>  Somit müssen die natürlichen Zahlen [mm]g[/mm] bestimmt werden, für
> die [mm]1+g(1+g)[/mm] durch [mm]7[/mm] teilbar ist. Nur leider komme ich hier
> nicht weiter...wahrscheinlich sehe ich das Offensichtliche
> nicht.

Hallo,

schau Dir als erstes mal an, welchen Reste mod 7 für g überhaupt infrage kommen.

Danach solltst Du eine Idee haben, die Du dann beweisen kannst.

Bezug
                
Bezug
Teilbarkeit / g-adische Darst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:52 Di 27.05.2008
Autor: grenife

Hi,

durch Ausprobieren weiß ich mittlerweile, dass wohl die Zahlen $2+7n$ und $4+7n$ die Bedingung erfüllen. Außerdem kommen als Reste nur 1,3 und 6 in Frage, aber ich sehe leider weder wie ich dies beweisen, noch wie ich eine allgemeine Aussage daraus ziehen kann.

Viele Grüße
Gregor


> > Bestimmen Sie alle [mm]g\in\mathbb{N}[/mm], für die [mm](111)_g[/mm] durch [mm]7[/mm]
> > teilbar ist.
>  >  Hallo zusammen,
>  >  
> > komme bei dieser Aufgabe an einer Stelle nicht weiter. Die
> > Zahl [mm](111)_g[/mm] kann geschrieben werden als
> > [mm](111)_g=1+g+g^2=1+g(1+g)[/mm].
>  >  Somit müssen die natürlichen Zahlen [mm]g[/mm] bestimmt werden,
> für
> > die [mm]1+g(1+g)[/mm] durch [mm]7[/mm] teilbar ist. Nur leider komme ich hier
> > nicht weiter...wahrscheinlich sehe ich das Offensichtliche
> > nicht.
>  
> Hallo,
>  
> schau Dir als erstes mal an, welchen Reste mod 7 für g
> überhaupt infrage kommen.
>  
> Danach solltst Du eine Idee haben, die Du dann beweisen
> kannst.


Bezug
                        
Bezug
Teilbarkeit / g-adische Darst.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Di 27.05.2008
Autor: angela.h.b.


> Hi,
>  
> durch Ausprobieren weiß ich mittlerweile, dass wohl die
> Zahlen [mm]2+7n[/mm] und [mm]4+7n[/mm] die Bedingung erfüllen. Außerdem
> kommen als Reste nur 1,3 und 6 in Frage, aber ich sehe
> leider weder wie ich dies beweisen, noch wie ich eine
> allgemeine Aussage daraus ziehen kann.

Hallo,

Du brauchst das doch lediglich für g=7n+r  mit r=0,1,2,3,4,5,6 vorzurechnen.

Fall 1: r=0

Es ist [mm] 1+g+g^2=1+7n+49n= [/mm] 1+7*8n, also läßt [mm] 1+g+g^2 [/mm] bei Division durch 7 den Rest 1 und ist somit nicht durch 7 teilbar.

Fall 2: r=1

Es ist [mm] 1+g+g^2=1+(7n+1)+(7n+1)^2=..., [/mm] also

usw.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de