www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - System von Teilbarkeiten
System von Teilbarkeiten < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

System von Teilbarkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Fr 29.03.2013
Autor: wauwau

Aufgabe
seien [mm] $a_1,a_2,...,a_n$ [/mm] ganze Zahlen $> 1$ und $n [mm] \ge [/mm] 2$
mit

[mm] $a_1-1|a_1\cdot a_2 \cdot [/mm] .... [mm] \cdot a_n-1$ [/mm]
[mm] $a_2-1|a_1\cdot a_2 \cdot [/mm] .... [mm] \cdot a_n-1$ [/mm]
.
.
[mm] $a_n-1|a_1\cdot a_2 \cdot [/mm] .... [mm] \cdot a_n-1$ [/mm]

gibt es dafür Lösungen ausser der trivialen, dass alle [mm] $a_i$ [/mm] gleich sind?

Für n=2 ist das ja relativ einfach zu zeigen, dass es keine anderen Lösungen gibt, aber für größere n?

        
Bezug
System von Teilbarkeiten: z.B. zwei Lösungen
Status: (Antwort) fertig Status 
Datum: 14:52 Fr 29.03.2013
Autor: reverend

Hallo wauwau,

> seien [mm]a_1,a_2,...,a_n[/mm] ganze Zahlen [mm]> 1[/mm] und [mm]n \ge 2[/mm]
> mit

>

> [mm]a_1-1|a_1\cdot a_2 \cdot .... \cdot a_n-1[/mm]
> [mm]a_2-1%7Ca_1%5Ccdot%20a_2%20%5Ccdot%20....%20%5Ccdot%20a_n-1[/mm]

>

> .
> .
> [mm]a_n-1|a_1\cdot a_2 \cdot .... \cdot a_n-1[/mm]

>

> gibt es dafür Lösungen ausser der trivialen, dass alle
> [mm]a_i[/mm] gleich sind?

Wenn das oben schon alle Bedingungen sind, ist z.B. [mm] a_1=a_2=5, a_3=a_4=7 [/mm] eine Lösung.

Nachtrag: wenn die [mm] a_i [/mm] lieber paarweise verschieden sein sollen, ist z.B. [mm] a_1=5, a_2=7, a_3=13, a_4=455 [/mm] auch eine Lösung. Wie Dir sicher auffällt, ist $455=5*7*13$.

> Für n=2 ist das ja relativ einfach zu zeigen, dass es
> keine anderen Lösungen gibt, aber für größere n?

Grüße
reverend

Bezug
                
Bezug
System von Teilbarkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Fr 29.03.2013
Autor: sometree

Hallo zusammen,

mein Tipp:
Carmichael-Zahlen.

Bezug
                        
Bezug
System von Teilbarkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Fr 29.03.2013
Autor: reverend

Hallo sometree,

> mein Tipp:
> Carmichael-Zahlen.

Ja, genau das besagt der Satz von Korselt.
Aber es gibt eben noch mehr Lösungen.
Es gibt nicht so viele, aber sicher abzählbar unendlich viele. ;-)

Grüße
reverend

Bezug
                                
Bezug
System von Teilbarkeiten: Super danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Sa 30.03.2013
Autor: wauwau

wusste ja, das ich das von wo kenne - bin aber nicht auf Carmichael Zahlen gekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de