www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 17:09 Do 08.09.2005
Autor: tux_03

Hallo,

ich schon wieder :-)

Also: Dieses Mal habe ich eine Frage bezogen auf die Stochastische Unabhängigkeit zweier ZVen.

Ich habe die Formel:

[mm]P_X=P_{X_1} \otimes \ldots \otimes P_{X_n}[/mm]

Wobei [mm] X=\left(X_1,\ldots X_n\right)[/mm] ist

Nun gibt es ja für Ereignisse die Formel [mm]P\left( A \cap B \right)=P\left(A\right) *\left(B\right)[/mm].
Da kann kann ich mir vorstellen, dass einfach die Schnittmenge der beiden Ereignisse (linke Seite) genommen wird, Wahrscheinlichkeit ausgerechnet wird und dann mit dem Produktmaß(rechte seite) verglichen wird. Wenn beide Seiten gleich sind, dann sind A u. B Stochastisch unabhängig. Kann mir jemand erklären, wie das dann mit den Zufallsvariablen (linke Seite, obige Formel) funktioniert (am besten mit einem kleinen Beispiel - wäre nett) . Die rechte Seite erscheint mir klar. (Es sollten sich ja immer für die linke Seite irgendwie Zahlenpaare ergeben, die zu "schneiden" sind? Oder? Das soll dann irgendwie die gemeinsame Verteilung von aller ZVen von X sein. Oder?).


Ciao tux_03

        
Bezug
Stochastische Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Do 08.09.2005
Autor: djmatey

Hallo,
also das auf der rechten Seite der Gleichung ist das Produkt zweier Maße, kein Produktmaß. Dieser Begriff ist für  [mm] \otimes [/mm] festgelegt. Z.B. ist für Maße  [mm] P_{1}, [/mm] ... , [mm] P_{n} [/mm] das Produktmaß [mm] \otimes P_{i}. [/mm] Da gehört dann eigentlich noch i=1 bis n dran wie bei einer Summe - keine Ahnung, wie man das hier darstellt...
Die stochastische Unabhängigkeit von Zufallsgrößen [mm] X_{i} [/mm] ist dann äquivalent damit, dass
[mm] P^{(X_{1}, ... , X_{n})} [/mm] = [mm] \otimes P^{X_{i}}, [/mm]
d.h. die gemeinsame Verteilung der [mm] X_{i} [/mm] ist gleich dem Produktmaß. Es gibt noch einige weitere Äquivalenzen dazu, z.B. dass dann die Dichte der gemeinsamen Verteilung gleich dem Produkt der einzelnen Dichten ist.
Ein sehr gutes Buch u.a. dafür ist
Norbert Schmitz - Vorlesungen über Wahrscheinlichkeitstheorie (Teubner Verlag)
Kann ich echt empfehlen!
Ein Beispiel zu dem Ganzen:
Betrachte Zufallsgrößen [mm] X_{1}, [/mm] ... , [mm] X_{n}, [/mm] die B(1,p)-verteilt und st.u. sind.
Genau dann gilt für X = [mm] (X_{1}, [/mm] ... , [mm] X_{n}) [/mm]
[mm] P^{X} [/mm] = [mm] \otimes P^{X_{i}} [/mm] = [mm] \otimes [/mm] B(1,p)
und weiterhin für [mm] x_{i}=1 [/mm] oder [mm] x_{i}=0 [/mm]
[mm] f^{X}(x_{1}, [/mm] ... , [mm] x_{n}) [/mm] = [mm] \produkt_{i=1}^{n} p^{x_{i}} (1-p)^{1-x_{i}} [/mm] =  [mm] p^{\summe_{i=1}^{n}x_{i}} [/mm] *  [mm] (1-p)^{n-\summe_{i=1}^{n}x_{i}} [/mm]

Hoffe, das hat Dir geholfen! :-)
Beste Grüße,
djmatey

Bezug
                
Bezug
Stochastische Unabhängigkeit: Frage_paarweise
Status: (Frage) beantwortet Status 
Datum: 14:35 Fr 09.09.2005
Autor: tux_03

Hallo, djmatey,


>  Betrachte Zufallsgrößen [mm]X_{1},[/mm] ... , [mm]X_{n},[/mm] die
> B(1,p)-verteilt und st.u. sind.
>  Genau dann gilt für X = [mm](X_{1},[/mm] ... , [mm]X_{n})[/mm]
> [mm]P^{X}[/mm] = [mm]\otimes P^{X_{i}}[/mm] = [mm]\otimes[/mm] B(1,p)
>  und weiterhin für [mm]x_{i}=1[/mm] oder [mm]x_{i}=0[/mm]
>  [mm]f^{X}(x_{1},[/mm] ... , [mm]x_{n})[/mm] = [mm]\produkt_{i=1}^{n} p^{x_{i}} (1-p)^{1-x_{i}}[/mm]
> =  [mm]p^{\summe_{i=1}^{n}x_{i}}[/mm] *  
> [mm](1-p)^{n-\summe_{i=1}^{n}x_{i}}[/mm]

Das muss man dann aber für alle Paare X,Y durchführen. Wenns bei einem nicht stimmt, dann ists aus mit der Unabhängigkeit oder?

> Hoffe, das hat Dir geholfen! :-)

Hast du schon!

Ciao tux_03

Bezug
                        
Bezug
Stochastische Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Fr 09.09.2005
Autor: Julius

Hallo!

Wieso redest du hier plötzlich von Paaren?

Noch einmal zur Verdeutlichung:

Es seien [mm] $X_1,\ldots,X_n$ [/mm] Zufallsvariablen mit

[mm] $X_i [/mm] : [mm] (\Omega,{\cal A},P) \to (\Omega_i,{\cal A}_i)$ [/mm]

für $i [mm] \in \{1,2,\ldots,n\}$. [/mm]

Dann heißen [mm] $X_1,\ldots,X_n$ [/mm] stochastisch unabhängig, wenn

(*) [mm] $P_{X_1 \otimes \ldots \otimes X_n} \left( \prod\limits_{i=1}^n A_i \right)= P(X_1 \in A_1,\ldots,X_n \in A_n) [/mm] = [mm] P(X_1 \in A_1) \cdot \ldots \cdot P(X_n \in A_n) [/mm] = [mm] \prod\limits_{i=1}^n P_{X_i}(A_i) [/mm] = [mm] \left( \bigotimes\limits_{i=1}^n P_{X_i} \right) \left( \prod\limits_{i=1}^n A_i \right)$ [/mm]

gilt, und zwar für alle möglichen Wahlen von [mm] $A_i \in {\cal A}_i$, $i=1,\ldots,n$. [/mm]

Sobald es auch nur ein $n$-Tupel [mm] $(A_1,\ldots,A_n)$ [/mm] mit Mengen [mm] $A_i \in {\cal A}_i$ [/mm] gibt, so dass (*) nicht erfüllt ist, sind [mm] $X_1,\ldots,X_n$ [/mm] stochastisch abhängig.

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de