www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 So 03.05.2015
Autor: fuoor

Aufgabe
Bestimmen Sie für die folgenden Funktionen die Mengen aller Punkte, in denen sie stetig sind:

[mm] f:\IR^{2} \to \IR [/mm]
[mm] f(x,y)=\begin{cases} \bruch{2xy}{x^{2}+y^{2}} , & \mbox{falls} (x,y) \not=(0,0) \\ 0, & \mbox{falls } (x,y)=(0,0) \end{cases} [/mm]

Sowie

[mm] g:\IR^{2} \to \IR [/mm]
[mm] g(x,y)=\begin{cases} (x^{2}+y^{2})arctan(\bruch{1}{x-y}) , & \mbox{falls}x\not=y \\ 0, & \mbox{falls } x=y \end{cases} [/mm]

Hallo zusammen!

Bezüglich f habe ich zuerst die zwei Nullfolgen [mm] (\bruch{1}{k},\bruch{1}{k+1}) [/mm] genommen und habe daraus den Grenzwert 1 ermittelt. Gleiches erhalte ich wenn ich x=y setze. Also ist die Funktion nicht stetig in (0,0). Passt das?

Bei g rätsel ich gerade noch herum. Mein Problem ist, dass ich nicht so richtig weiß wie ich es für alle [mm] x\not=y [/mm] zeige. Mein Ansatz war, dass ich für die Folgen 1. (x, [mm] x+\bruch{1}{k}) [/mm] sowie 2. [mm] (y+\bruch{1}{k}, [/mm] y) den Grenzwert gegen unendlich ermittel. Dadurch ist ja dann (x, [mm] x+\bruch{1}{k}) [/mm] fast (x,x) und [mm] (y+\bruch{1}{k}, [/mm] y) fast (y,y). Der Grenzwert müsste ja dann theoretisch 0 sein. Ich erhalte dann für 1. den Grenzwert [mm] \pi x^{2} [/mm] und für 2. den Grenzwert [mm] \pi y^{2}. [/mm] Irgendetwas gefällt mir daran aber noch nicht.

Ist die Richtung die ich bei g eingeschlagen habe überhaupt machbar?

Viele Grüße!

        
Bezug
Stetigkeit: Idee
Status: (Antwort) fertig Status 
Datum: 00:59 Mo 04.05.2015
Autor: bezier

Hallo,

Warum nicht : ( x , y ) = ( r cos t , r sin t ) ?

Dann : was kommt mit f( x , y ) [ dann mit g( x , y ) ] wenn r -> 0 ?

Gruss.


Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 05:17 Mo 04.05.2015
Autor: fred97


> Bestimmen Sie für die folgenden Funktionen die Mengen
> aller Punkte, in denen sie stetig sind:
>  
> [mm]f:\IR^{2} \to \IR[/mm]
>  [mm]f(x,y)=\begin{cases} \bruch{2xy}{x^{2}+y^{2}} , & \mbox{falls} (x,y) \not=(0,0) \\ 0, & \mbox{falls } (x,y)=(0,0) \end{cases}[/mm]
>  
> Sowie
>
> [mm]g:\IR^{2} \to \IR[/mm]
>  [mm]g(x,y)=\begin{cases} (x^{2}+y^{2})arctan(\bruch{1}{x-y}) , & \mbox{falls}x\not=y \\ 0, & \mbox{falls } x=y \end{cases}[/mm]
>  
> Hallo zusammen!
>  
> Bezüglich f habe ich zuerst die zwei Nullfolgen
> [mm](\bruch{1}{k},\bruch{1}{k+1})[/mm] genommen und habe daraus den
> Grenzwert 1 ermittelt. Gleiches erhalte ich wenn ich x=y
> setze. Also ist die Funktion nicht stetig in (0,0). Passt
> das?

Ja. Und wie siehts mit der Sretigkeit von f auf [mm] \IR \setminus \{(0,0)\} [/mm] aus ?


>  
> Bei g rätsel ich gerade noch herum. Mein Problem ist, dass
> ich nicht so richtig weiß wie ich es für alle [mm]x\not=y[/mm]
> zeige. Mein Ansatz war, dass ich für die Folgen 1. (x,
> [mm]x+\bruch{1}{k})[/mm] sowie 2. [mm](y+\bruch{1}{k},[/mm] y) den Grenzwert
> gegen unendlich ermittel. Dadurch ist ja dann (x,
> [mm]x+\bruch{1}{k})[/mm] fast (x,x) und [mm](y+\bruch{1}{k},[/mm] y) fast
> (y,y). Der Grenzwert müsste ja dann theoretisch 0 sein.
> Ich erhalte dann für 1. den Grenzwert [mm]\pi x^{2}[/mm] und für
> 2. den Grenzwert [mm]\pi y^{2}.[/mm] Irgendetwas gefällt mir daran
> aber noch nicht.
>
> Ist die Richtung die ich bei g eingeschlagen habe
> überhaupt machbar?


Ich glaube, Du denkst in die richtige Richtung, aber Deine Ausführungen ....


Wir untersuchen g auf Stetigkeit in [mm] (x_0,x_0). [/mm]

Es gilt

[mm] $g(x_0,x_0 +\bruch{1}{k})=(x_0^2+(x_0 +\bruch{1}{k})^2)*arctan(-k) \to -x_0^2* \pi$ [/mm]   für $k [mm] \to \infty$ [/mm]

und

[mm] $g(x_0+\bruch{1}{k},x_0 [/mm] ) [mm] \to x_0^2* \pi$ [/mm]   für $k [mm] \to \infty$ [/mm]


Iat also [mm] x_0 \ne [/mm] 0, so ist g in [mm] (x_0,x_0) [/mm] nicht stetig.

Zeige noch: g ist in (0,0) stetig.

FRED

>  
> Viele Grüße!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de