www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Stetig differenzierbar
Stetig differenzierbar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig differenzierbar: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:06 Mo 12.01.2009
Autor: MaRaQ

Aufgabe
Sei f(0) = 0 und f(x) = [mm] x^n [/mm] * [mm] sin(\bruch{1}{x} [/mm] für x [mm] \not= [/mm] 0. Für welche n [mm] \in \IN_0 [/mm] ist f im Nullpunkt differenzierbar bzw. stetig differenzierbar.  

Gute Frage - nächste Frage?
Hier musste ich mich schon sehr lange einlesen, bis ich überhaupt einen Denkansatz hatte, worauf die Aufgabe vielleicht hinauslaufen könnte.

Für x [mm] \rightarrow [/mm] 0 nimmt [mm] sin(\bruch{1}{x}) [/mm] alle Werte des Intervalls [-1,1] an - und zwar für den linken Grenzwert genauso wie für den rechten Grenzwert.

Also hängt alles von [mm] x^n [/mm] ab. für n = 0 steht da der Term
f(x) = [mm] sin(\bruch{1}{x}) [/mm]
Das ist in 0 weder stetig noch differenzierbar und schon gar nicht stetig differenzierbar.

für n = 1 haben wir
f(x) = [mm] x*sin(\bruch{1}{x}) [/mm]
und [mm] \limes_{x\rightarrow0+} x*sin(\bruch{1}{x}) [/mm] = 0, [mm] \limes_{x\rightarrow0-} x*sin(\bruch{1}{x}) [/mm] = 0, f(0) = 0.

f'(0) = 0 und f'(x) = [mm] sin(\bruch{1}{x}) [/mm] + [mm] xcos(\bruch{1}{x}) [/mm]
Das ist in 0 nicht stetig, da linker und rechter Grenzwert von 0 nicht bestimmbar sind.
[mm] \Rightarrow [/mm] f ist für n = 1 differenzierbar, aber nicht stetig differenzierbar.

SOLLTE dieser Weg der richtige sein, so ist mir auch der Rest der Aufgabe klar, wenn nicht, macht es wenig Sinn, hier weiter zu notieren.

Ergo: Bin ich auf dem Holzweg?

LG, Tobias


        
Bezug
Stetig differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 12.01.2009
Autor: reverend

Ich finde, das fängt gut an. Allerdings gibt es ja zwei mögliche Ausgänge in diesem Verlauf, und der andere zeigt sich bei [mm] n\ge2. [/mm] Mach doch mal einen dieser Fälle.

Bezug
                
Bezug
Stetig differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Mo 12.01.2009
Autor: MaRaQ

So sieht meine weitere Bearbeitung dazu aus:

Erst einmal (zum eigenen Verständnis) noch den Fall n=2 ausgeschrieben...

n = 2:

f(x) = [mm] x^2 [/mm] * [mm] sin(\bruch{1}{x}) [/mm]
f'(0) = 0, f'(x [mm] \not= [/mm] 0) = [mm] 2x*sin(\bruch{1}{x}) [/mm] + [mm] x^2(cos(\bruch{1}{x})) [/mm]
[mm] \limes_{x\rightarrow0+} 2x*sin(\bruch{1}{x}) [/mm] + [mm] x^2(cos(\bruch{1}{x})) [/mm] = 0, [mm] \limes_{x\rightarrow0-} 2x*sin(\bruch{1}{x}) [/mm] + [mm] x^2(cos(\bruch{1}{x})) [/mm] = 0
[mm] \Rightarrow [/mm] für n=2 ist f stetig differenzierbar.

Erkenntnis: für [mm] n\ge2 [/mm] ist f stetig differenzierbar, da in der Ableitung mit [mm] x^n [/mm] bzw. [mm] nx^{n-1} [/mm] Faktoren stehen bleiben, die für [mm] x\rightarrow0 [/mm] gegen 0 gehen und somit links- und rechtseitige Limites der Ableitung gegen 0 gehen...

Dies müsste ich jetzt noch "formelmäßig" verpacken.

Bezug
                        
Bezug
Stetig differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Di 13.01.2009
Autor: reverend

Jau. Sonst gut.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de