www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Singularität
Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 06.01.2016
Autor: Reynir

Aufgabe
Bestimmen und klassifizieren Sie alle Singularitäten der Funktion [mm] $\frac{\cos(\pi z)}{(z-\frac{1}{2})^2}. [/mm]

Ich habe das soweit nachvollzogen, aber ich hätte jetzt getippt, dass bei [mm] $\frac{1}{2}$ [/mm] ein Pol der Ordnung zwei liegt, aber das müsste laut der Lösung einer der Ordnung 1 sein, weil der cos hier auch eine Nullstelle hat.
Ich weis, dass es sich bei Polynomen kürzen lässt (blödes Beispiel $ [mm] \frac{(x-1)}{(x-1)^2}=\frac{1}{x-1}$), [/mm] aber hier sehe ich nicht, warum das gelten sollte.
Viele Grüße,
Reynir
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

[mm] $\cos(\pi [/mm] z)$ ist holomorph und damit als Potenzreihe darstellbar.
Überlege dir kurz, was die Eigenschaft, dass dort eine Nullstelle vorliegt für die Potenzreihe bedeutet und dann begründe, warum du kürzen kannst.

Gruß,
Gono.

Bezug
                
Bezug
Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Fr 08.01.2016
Autor: Reynir

Danke für deine Hilfe. ;)
Viele Grüße,
Reynir

Bezug
        
Bezug
Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 07:17 Do 07.01.2016
Autor: fred97

$cos( [mm] \pi [/mm] z)$ hat in z=1/2 eine einfache Nullstelle (warum ?).

Somit gibt es eine ganze Funktion f mit

  
   $cos( [mm] \pi z)=(z-\bruch{1}{2})*f(z)$ [/mm]  für alle z [mm] \in \IC [/mm] und f(1/2) [mm] \ne [/mm] 0.

Damit haben wir

   $ [mm] \frac{\cos(\pi z)}{(z-\frac{1}{2})^2}= \frac{f(z)}{z-\frac{1}{2}}$ [/mm]

FRED
  

Bezug
                
Bezug
Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Fr 08.01.2016
Autor: Reynir

Hi,
ein Argument, das mir einfiele ist, dass mehrfache Nullstellen eines Polynoms auch Nullstellen von dessen Ableitung sind, entsprechend dann auch für Potenzreihen (das fände ich zumindest naheliegend). [mm] $\cos'=- \sin$ [/mm] und die Nullstellen des cos sind keine vom sin.
Was ist der Ansatz zu zeigen, dass es so eine ganze Funktion gibt? Einfach z-1 aus der Potenzreihendarstellung rausziehen?
Viele Grüße,
Reynir.

Bezug
                        
Bezug
Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Sa 09.01.2016
Autor: fred97


> Hi,
>  ein Argument, das mir einfiele ist, dass mehrfache
> Nullstellen eines Polynoms auch Nullstellen von dessen
> Ableitung sind, entsprechend dann auch für Potenzreihen
> (das fände ich zumindest naheliegend). [mm]\cos'=- \sin[/mm] und
> die Nullstellen des cos sind keine vom sin.

Ja


> Was ist der Ansatz zu zeigen, dass es so eine ganze
> Funktion gibt? Einfach z-1 aus der Potenzreihendarstellung
> rausziehen?

Allgemein:

ist g: [mm] \IC\to \IC [/mm] holomorph, [mm] z_0 \in \IC [/mm] und und [mm] g(z_0)=0 [/mm] und [mm] g'(z_0) \ne [/mm] 0, so sieht die Potenzreihenentwicklung von g um [mm] z_0 [/mm] so aus:

  [mm] g(z)=a_1(z-z_0)+a_2(z-z_0)^2 [/mm] + ....   für z [mm] \in \IC. [/mm]

Dabei ist [mm] a_1=g'(z_0) \ne [/mm] 0.

Setzt man [mm] f(z):=a_1+a_2(z-z_0)+ [/mm] ....   für z [mm] \in \IC, [/mm] so ist f eine ganze Funktion,

    [mm] g(z)=(z-z_0)f(z) [/mm]

und [mm] f(z_0)=a_1 \ne [/mm] 0.

FRED

>  Viele Grüße,
>  Reynir.


Bezug
                                
Bezug
Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Sa 09.01.2016
Autor: Reynir

Super, danke für deine Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de