www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Rekursion
Rekursion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Di 17.01.2023
Autor: Trikolon

Aufgabe
Gegeben ist die Folge [mm] a_n [/mm] durch
[mm] a_1=1 [/mm] und [mm] a_{n+1}=0,25*(a_n^2)+1. [/mm]
Zeige, dass [mm] a_n [/mm] konvergiert und ermittle den Grenzwert.

Hallo,

im Prinzip war die Aufgabe kein Problem. Per Induktion habe ich gezeigt, dass [mm] (a_n) [/mm] nach oben beschränkt (durch 2) und außerdem monoton steigend ist. Daraus folgt die Konvergenz und der Grenzwert ist 2.

Nun meine Frage: ich habe jetzt noch (ohne Grund ;) ) versucht per Induktion zu zeigen, dass z.B. 100 eine obere Schranke ist. Allerdings scheitere ich daran. Im Induktionsschritt ist dann: [mm] a_{n+1}=0,25*(a_n^2)+1 [/mm] <= 2501 (wenn man [mm] a_n [/mm] <=100 voraussetzt), was offensichtlich nicht passen kann.
Woran liegt das denn?

        
Bezug
Rekursion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Di 17.01.2023
Autor: Gonozal_IX

Hiho,

> Nun meine Frage: ich habe jetzt noch (ohne Grund ;) )
> versucht per Induktion zu zeigen, dass z.B. 100 eine obere
> Schranke ist.

Sehr gut! Fördert das Verständnis.

> Allerdings scheitere ich daran. Im
> Induktionsschritt ist dann: [mm]a_{n+1}=0,25*(a_n^2)+1[/mm] <= 2501
> (wenn man [mm]a_n[/mm] <=100 voraussetzt), was offensichtlich nicht
> passen kann.

Wieso sollte das nicht passen?
Du hast erkannt: Gilt [mm] $a_n \le [/mm] 100$, dann folgt erst mal nur sicher [mm] $a_{n+1} \le [/mm] 2500$
Eigentlich willst du ja das andere zeigen, nämlich dass gilt [mm] $a_{n+1} \le [/mm] 100$.

Das gilt eben genau dann, wenn [mm] $0,25*(a_n^2)+1 \le [/mm] 100 [mm] \quad \iff \quad a_n \le \sqrt{396} \approx [/mm] 19.9$, die Nichtnegativität von [mm] $a_n$ [/mm] mal vorausgesetzt.

Das bedeutet: Die Bedingung [mm] $a_{n+1} \le [/mm] 100$ erzwingt [mm] $a_n \le \sqrt{396} \approx [/mm] 19.9$

Macht man das jetzt weiter für [mm] $a_{n_1}$ [/mm] etc wirst du feststellen, dass du dich von oben der 2 annäherst.

Das bedeutet: 100 ist genau dann eine obere Schranke, wenn alle Folgenglieder kleiner gleich 2 sind, d.h. 2 eine obere Schranke ist.
Ist ein Folgenglied größer als 2, wächst die Folge unbeschränkt.

Was du implizit vorausgesetzt hast bei deiner Betrachtung ist ja, dass 100 als obere Schranke auch erreicht werden sollte, das muss für eine obere Schranke ja gar nicht gelten, wie dein Beispiel schön zeigt.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de