www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Mi 03.06.2015
Autor: UniversellesObjekt

Aufgabe
Es sei [mm] $d_k$ [/mm] eine nichtnegative Folge mit [mm] $\sum d_k=\infty$. [/mm] Was lässt sich über das Konvergenzverhalten von [mm] $\sum \frac{d_k}{1+d_k}$ [/mm] und [mm] $\sum\frac{d_k}{1+k^2d_k}$ [/mm] aussagen?


Hallo, bei der ersten Reihe wäre ich mir relativ sicher, dass sie ebenfalls divergiert, denn es gilt ja [mm] $a_k:=d_k-\frac{d_k}{1+d_k}=\frac{d_k^2}{1+d_k}$. [/mm] Wenn [mm] $\sum \frac{d_k}{1+d_k}$ [/mm] konvergieren würde, wäre [mm] $\frac{d_k}{1+d_k}$ [/mm] Nullfolge, somit auch [mm] $d_k$. [/mm] Dann wäre aber [mm] $a_k\le \frac{d_k}{1+d_k}$, [/mm] für große $k$, das heißt es würde auch [mm] $\sum a_k$ [/mm] konvergieren und damit auch [mm] $\sum d_k=\sum a_k+\frac{d_k}{1+d_k}$. [/mm]

Ist das richtig argumentiert? Für die zweite Reihe habe ich leider keine Idee.

Liebe Grüße,
UniversellesObjekt

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Mi 03.06.2015
Autor: Gonozal_IX

Hiho,

sehe keine Beanstandung bei deiner Argumentation für den ersten Teil.

Für die zweite Reihe bedenke: Für [mm] $d_k\not= [/mm] 0$ gilt [mm] $\frac{d_k}{1+k^2d_k} [/mm] = [mm] \bruch{d_k}{d_k\left(\bruch{1}{d_k} + k^2\right)} [/mm] = [mm] \frac{1}{\bruch{1}{d_k} + k^2} \le \bruch{1}{k^2}$ [/mm]

Und damit folgt für alle k:

[mm] $\frac{d_k}{1+k^2d_k} \le \bruch{1}{k^2}$ [/mm]

Gruß,
Gono


Bezug
        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Mi 03.06.2015
Autor: fred97

Eine Bemerkung:

Sind alle [mm] d_k>0 [/mm] , so gilt

   $ [mm] \sum d_k$ [/mm]  konvergiert [mm] \gdw $\sum \frac{d_k}{1+d_k} [/mm] $ konvergiert.

FRED



Bezug
                
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:02 Mi 03.06.2015
Autor: UniversellesObjekt

Hallo Fred,

wo braucht man die zweite Bedingung? Meine Überlegung zu (ii) konvergiert [mm] $\implies$ [/mm] (i) konvergiert müsste doch immer durchgehen, oder? Und umgekehrt müsste stets [mm] $\frac{d_k}{1+d_k}\le d_k$ [/mm] gelten, also auch die andere Richtung. Oder übersehe ich etwas?

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Mi 03.06.2015
Autor: fred97


> Hallo Fred,
>  
> wo braucht man die zweite Bedingung?

Du hast recht. Die 2. Bed. braucht man nicht. Werde es korrigieren.

FRED

>  Meine Überlegung zu
> (ii) konvergiert [mm]\implies[/mm] (i) konvergiert müsste doch
> immer durchgehen, oder? Und umgekehrt müsste stets
> [mm]\frac{d_k}{1+d_k}\le d_k[/mm] gelten, also auch die andere
> Richtung. Oder übersehe ich etwas?
>  
> Liebe Grüße,
>  UniversellesObjekt


Bezug
                                
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:29 Mi 03.06.2015
Autor: Gonozal_IX

Hiho,

stelle gerade fest, man kann den Satz sogar noch verschärfen zu:

Sind alle $ [mm] d_k>0 [/mm] $ , so gilt

$ [mm] \sum d_k [/mm] $  konvergiert $ [mm] \gdw [/mm] $  $ [mm] \sum \frac{d_k}{1+n*d_k} [/mm] $ konvergiert für alle [mm] $n\in\IN_0$ [/mm]

bzw:

$ [mm] \sum d_k [/mm] $  konvergiert $ [mm] \gdw [/mm] $  $ [mm] \sum \frac{d_k}{1+n*d_k} [/mm] $ konvergiert für ein [mm] $n\in\IN_0$ [/mm]

Kannte ich noch nicht :-)

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de