www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix
Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Di 19.08.2008
Autor: Zwinkerlippe

Aufgabe
Geben Sie diejenigen der folgenden Matrizen an, die den Rang 2 haben. Führen Sie dabei eine erforderliche Fallunterscheidung hinsichtlich der auftretenden Konstanten durch:

[mm] A=\pmat{ 1 & 2 & -2 \\ 2 & a & 1 \\ -2 & -3 & 1} [/mm]

[mm] B=\pmat{ 2 & 1 & b-2 & 3 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & 2+a & b} [/mm]

[mm] C=\pmat{ 2 & 1 & 2 & 3 \\ -1 & -1 & -2 & -1 \\ 0 & 1 & 4 & -1} [/mm]

Einen wunderschönen Nachmittag ich habe berechnet

[mm] A=\pmat{ 1 & 2 & -2 \\ 2 & a & 1 \\ -2 & -3 & 1}=\pmat{ 1 & 2 & -2 \\ 0 & 4-a & -5 \\ 0 & 1 & -3}=\pmat{ 1 & 2 & -2 \\ 0 & 4-a & -5 \\ 0 & 7-3a & 0} [/mm]

der Rang ist 2  für [mm] a=\bruch{7}{3}, [/mm] sonst ist der Rang 3

[mm] B=\pmat{ 2 & 1 & b-2 & 3 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & 2+a & b} [/mm]

für a=-2 und b=0 ist der Rang 2, sonst 3

[mm] C=\pmat{ 2 & 1 & 2 & 3 \\ -1 & -1 & -2 & -1 \\ 0 & 1 & 4 & -1}=C=\pmat{ 2 & 1 & 2 & 3 \\ 0 & -1 & -2 & 1 \\ 0 & 1 & 4 & -1}=C=\pmat{ 2 & 1 & 2 & 3 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 2 & 0} [/mm]

der Rang ist 3, die Matrix C gehört also nicht zur Lösung der Aufgabe

kann ich die Lösung so stehen lassen, oder habe ich etwas vergessen? ich danke Euch Zwinkerlippe

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Di 19.08.2008
Autor: angela.h.b.


> Geben Sie diejenigen der folgenden Matrizen an, die den
> Rang 2 haben. Führen Sie dabei eine erforderliche
> Fallunterscheidung hinsichtlich der auftretenden Konstanten
> durch:
>  
> [mm]A=\pmat{ 1 & 2 & -2 \\ 2 & a & 1 \\ -2 & -3 & 1}[/mm]
>  
> [mm]B=\pmat{ 2 & 1 & b-2 & 3 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & 2+a & b}[/mm]
>  
> [mm]C=\pmat{ 2 & 1 & 2 & 3 \\ -1 & -1 & -2 & -1 \\ 0 & 1 & 4 & -1}[/mm]
>  
> Einen wunderschönen Nachmittag ich habe berechnet
>  
> [mm]A=\pmat{ 1 & 2 & -2 \\ 2 & a & 1 \\ -2 & -3 & 1}=\pmat{ 1 & 2 & -2 \\ 0 & 4-a & -5 \\ 0 & 1 & -3}=\pmat{ 1 & 2 & -2 \\ 0 & 4-a & -5 \\ 0 & 7-3a & 0}[/mm]

Hallo,

diese Matrizen sind nicht gleich, setze daher keine Gleichheitszeichen.
Der letzten Umformung  kann ich nicht folgen.

>  
> der Rang ist 2  für [mm]a=\bruch{7}{3},[/mm] sonst ist der Rang 3
>
> [mm]B=\pmat{ 2 & 1 & b-2 & 3 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & 2+a & b}[/mm]
>  
> für a=-2 und b=0 ist der Rang 2, sonst 3

Ja.

>  
> [mm]C=\pmat{ 2 & 1 & 2 & 3 \\ -1 & -1 & -2 & -1 \\ 0 & 1 & 4 & -1}=C=\pmat{ 2 & 1 & 2 & 3 \\ 0 & -1 & -2 & 1 \\ 0 & 1 & 4 & -1}=C=\pmat{ 2 & 1 & 2 & 3 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 2 & 0}[/mm]
>  
> der Rang ist 3,

Ja.


> die Matrix C gehört also nicht zur Lösung
> der Aufgabe

???

Gruß v. Angela

Bezug
                
Bezug
Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Di 19.08.2008
Autor: Zwinkerlippe

Gruß in den matheraum

[mm] A=\pmat{ 1 & 2 & -2 \\ 2 & a & 1 \\ -2 & -3 & 1} [/mm]


[mm] \Rightarrow \pmat{ 1 & 2 & -2 \\ 0 & 4-a & -5 \\ 0 & 1 & -3} [/mm]

neue 3. Zeile: 3*II-5*III

[mm] \Rightarrow \pmat{ 1 & 2 & -2 \\ 0 & 4-a & -5 \\ 0 & 7-3a & 0} [/mm]

stimmt meine Überlegung jetzt, für [mm] a=\bruch{7}{3} [/mm] ist der Rang 2, sonst 3?

bei der Matrix C ist der Rang 3, ich habe geschrieben "die Matrix C gehört also nicht zur Lösung der Aufgabe", weil doch nur die Matrizen anzugeben sind, die den Rang 2 haben

Zwinkerlippe

Bezug
                        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Di 19.08.2008
Autor: schachuzipus

Hallo Zwinkerlippe,

> Gruß in den matheraum
>
> [mm]A=\pmat{ 1 & 2 & -2 \\ 2 & a & 1 \\ -2 & -3 & 1}[/mm]
>  
>
> [mm]\Rightarrow \pmat{ 1 & 2 & -2 \\ 0 & 4-a & -5 \\ 0 & 1 & -3}[/mm]
>  
> neue 3. Zeile: 3*II-5*III
>  
> [mm]\Rightarrow \pmat{ 1 & 2 & -2 \\ 0 & 4-a & -5 \\ 0 & 7-3a & 0}[/mm]
>  
> stimmt meine Überlegung jetzt, für [mm]a=\bruch{7}{3}[/mm] ist der
> Rang 2, sonst 3? [ok]
>  
> bei der Matrix C ist der Rang 3, ich habe geschrieben "die
> Matrix C gehört also nicht zur Lösung der Aufgabe", weil
> doch nur die Matrizen anzugeben sind, die den Rang 2 haben

[ok]


sieht alles richtig aus!

>  
> Zwinkerlippe


LG

schachuzipus

Bezug
                                
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Di 19.08.2008
Autor: Zwinkerlippe

Freu mich, Dank an Euch, Zwinkerlippe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de