www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - R-Moduln und Isomorphismus
R-Moduln und Isomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Moduln und Isomorphismus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:31 Mi 13.06.2007
Autor: Milka_Kuh

Aufgabe
Sei R ein Ring und [mm] M_{\alpha}, \alpha \in [/mm] I, eine Familie von R-Moduln.
Z.z: die kanonische Abb. [mm] \phi: [/mm]
[mm] \produkt_{\alpha \in I} Hom_{R}(M_{\alpha},N) \to Hom_{R}(\oplus M_{\alpha}, [/mm] N),
die jeder Familie von Abb. [mm] (f_{\alpha})_{\alpha \in I} [/mm] die Abb. [mm] (m_{\alpha})_{\alpha \in I} \mapsto \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] zuordnet, wohldefiniert ist und für jeden R-Modul N ein Isomorphismus ist.

Hallo,
bei dieser Aufgabe habe ich an manchen Stellen Schwierigkeiten und hoffe, dass mir jemand weiter hilft! Dafür wäre ich sehr dankbar.
Ich habe folgendes gemacht:
Es gilt doch [mm] \phi: (f_{\alpha})_{\alpha \in I} \mapsto \psi(m_{\alpha})_{\alpha \in I} [/mm] = [mm] \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm]

Stimmt die Definition der Abb. so? Diese Abb. hab ich mir aus den Angaben zusammengebastelt, und bin mir da nicht sicher, ob das richtig ist :-)

Zur Wohldefiniertheit:
Gelte [mm] f_{\alpha} [/mm] = [mm] g_{\alpha} [/mm]
[mm] \gdw f_{\alpha} [/mm] - [mm] g_{\alpha} [/mm] = 0
[mm] \gdw \summe_{\alpha \in I} (f_{\alpha} [/mm] - [mm] g_{\alpha}) (m_{\alpha}) [/mm] = 0, wegen der direkten Summe.
Hier weiß ich nicht, ob ich einfach dieses [mm] (m_{\alpha}) [/mm]  dazu schreiben kann...
[mm] \gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] -  [mm] \summe_{\alpha \in I} (g_{\alpha}(m_{\alpha}) [/mm] = 0
[mm] \gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] =  [mm] \summe_{\alpha \in I} (g_{\alpha}(m_{\alpha}) [/mm]
[mm] \gdw \phi((f_{\alpha})_{\alpha}) [/mm] = [mm] \phi((g_{\alpha})_{\alpha}) [/mm]

Stimmt das so?

Dann zum Gruppenhomomorphismus:
[mm] \phi((f_{\alpha})_{\alpha} [/mm] + [mm] ((g_{\alpha})_{\alpha}) [/mm] = [mm] \summe_{\alpha \in I} (f_{\alpha} [/mm] + [mm] g_{\alpha}) (m_{\alpha}) [/mm] = [mm] \summe_{\alpha \in I} f_{\alpha} (m_{\alpha}) [/mm]  + [mm] \summe_{\alpha \in I} g_{\alpha} (m_{\alpha}) [/mm] = [mm] \phi((f_{\alpha})_{\alpha}) [/mm] + [mm] \phi((g_{\alpha})_{\alpha}) [/mm]

Da weiß ich nicht, ob das so stimmt.

Dann zur Bijektivität von [mm] \phi: [/mm]
Bei der Injektivität habe ich einfach den Beweis von der Wohldefiniertheit von hinten aufgezogen.
Kann man das so machen?

Zur Surjektivität:
Sei [mm] \phi((f_{\alpha})_{\alpha}) [/mm] := w
[mm] \summe_{\alpha \in I} f_{\alpha} (m_{\alpha}) [/mm] = w
Jetzt habe ich ein Problem, da ich nicht weiß, wie ich weiter machen soll. Man muss, glaub ich, eine Abb. [mm] f_{alpha} [/mm] finden, die dies erfüllt.
Aber wie geht das?

Danke schonmal für die Hilfe.

Lg, Milka

        
Bezug
R-Moduln und Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Mo 18.06.2007
Autor: Mad_phoenix


> Sei R ein Ring und [mm]M_{\alpha}, \alpha \in[/mm] I, eine Familie
> von R-Moduln.
>  Z.z: die kanonische Abb. [mm]\phi:[/mm]
>  [mm]\produkt_{\alpha \in I} Hom_{R}(M_{\alpha},N) \to Hom_{R}(\oplus M_{\alpha},[/mm]
> N),
> die jeder Familie von Abb. [mm](f_{\alpha})_{\alpha \in I}[/mm] die
> Abb. [mm](m_{\alpha})_{\alpha \in I} \mapsto \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm]
> zuordnet, wohldefiniert ist und für jeden R-Modul N ein
> Isomorphismus ist.
>  Hallo,
>  bei dieser Aufgabe habe ich an manchen Stellen
> Schwierigkeiten und hoffe, dass mir jemand weiter hilft!
> Dafür wäre ich sehr dankbar.
>  Ich habe folgendes gemacht:
>  Es gilt doch [mm]\phi: (f_{\alpha})_{\alpha \in I} \mapsto \psi(m_{\alpha})_{\alpha \in I}[/mm]
> = [mm]\summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm]
>
> Stimmt die Definition der Abb. so? Diese Abb. hab ich mir
> aus den Angaben zusammengebastelt, und bin mir da nicht
> sicher, ob das richtig ist :-)
>  
> Zur Wohldefiniertheit:
>  Gelte [mm]f_{\alpha}[/mm] = [mm]g_{\alpha}[/mm]
>  [mm]\gdw f_{\alpha}[/mm] - [mm]g_{\alpha}[/mm] = 0
>  [mm]\gdw \summe_{\alpha \in I} (f_{\alpha}[/mm] - [mm]g_{\alpha}) (m_{\alpha})[/mm]
> = 0, wegen der direkten Summe.
>  Hier weiß ich nicht, ob ich einfach dieses [mm](m_{\alpha})[/mm]  
> dazu schreiben kann...
> [mm]\gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm] -  
> [mm]\summe_{\alpha \in I} (g_{\alpha}(m_{\alpha})[/mm] = 0
>  [mm]\gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm] =  
> [mm]\summe_{\alpha \in I} (g_{\alpha}(m_{\alpha})[/mm]
>  [mm]\gdw \phi((f_{\alpha})_{\alpha})[/mm]
> = [mm]\phi((g_{\alpha})_{\alpha})[/mm]
>  
> Stimmt das so?

Ich glaube nicht. Ich verstehe die Wohldefiniertheit hier so, dass du zeigen sollst, dass das bild von einem [mm]f_\alpha[/mm] auch wirklich aus [mm] Hom_{R}(\oplus M_{\alpha},[/mm]  stammt. Was versuchst du denn da zu zeigen?

>  
> Dann zum Gruppenhomomorphismus:
>  [mm]\phi((f_{\alpha})_{\alpha}[/mm] + [mm]((g_{\alpha})_{\alpha})[/mm] =
> [mm]\summe_{\alpha \in I} (f_{\alpha}[/mm] + [mm]g_{\alpha}) (m_{\alpha})[/mm]

[mm]\summe_{\alpha \in I} (f_{\alpha} + \summe_{\alpha \in I}g_{\alpha}) (m_{\alpha})[/mm]

> = [mm]\summe_{\alpha \in I} f_{\alpha} (m_{\alpha})[/mm]  +
> [mm]\summe_{\alpha \in I} g_{\alpha} (m_{\alpha})[/mm] =
> [mm]\phi((f_{\alpha})_{\alpha})[/mm] + [mm]\phi((g_{\alpha})_{\alpha})[/mm]
>  
> Da weiß ich nicht, ob das so stimmt.

Es stimmt alles soweit nur das du den entscheidenden Schritt übersprungen hast meiner Ansicht nach :). Das Problem hier ist nähmlich nicht das auseinander ziehen einzelner f und g sondern die Tatsache dass die Indexmenge hier nicht endlich sein muss und man dann nicht einfahc die Summen auseinander ziehen kann.  Hierfür musst du noch mit der Definition der Direkten Summe argumentieren.

>  
> Dann zur Bijektivität von [mm]\phi:[/mm]
>  Bei der Injektivität habe ich einfach den Beweis von der
> Wohldefiniertheit von hinten aufgezogen.
> Kann man das so machen?
>  
> Zur Surjektivität:
>  Sei [mm]\phi((f_{\alpha})_{\alpha})[/mm] := w
>  [mm]\summe_{\alpha \in I} f_{\alpha} (m_{\alpha})[/mm] = w
>  Jetzt habe ich ein Problem, da ich nicht weiß, wie ich
> weiter machen soll. Man muss, glaub ich, eine Abb.
> [mm]f_{alpha}[/mm] finden, die dies erfüllt.
>  Aber wie geht das?
>  
> Danke schonmal für die Hilfe.
>  
> Lg, Milka


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de