www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Quartil
Quartil < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quartil: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:03 Mo 28.12.2015
Autor: Martinius

Aufgabe
Schulbuch: Schnittpunkt 6;  Klett-Verlag;  Realschule 10. Klasse;  S. 11

Hallo liebe Leute,

ich bräuchte einmal Eure Hilfe bei der Berechnung von Quartilen bei gegebenen Ranglisten.

Bsp. 1     [mm] \begin{array}{c|c|c|c|c|c|c} 1. & 2. & 3. & 4. & 5. & 6. & 7.\\ \hline 818 & 850 & 886 & 1020 & 1025 & 1063 & 1146 \\ \end{array} [/mm]


Unteres Quartil:  [mm] $7*\frac{1}{4}\;=\;1,75\;\;\not\in\;\IN$ [/mm]  daher:  [mm] $X\left(\left[7*\frac{1}{4} \right]+1 \right)\;=\;X(2.)$ [/mm]  damit:  [mm] $Q_u\;=\;850$ [/mm]


Zentralwert:  [mm] $7*\frac{1}{2}\;=\;3,5\;\;\not\in\;\IN$ [/mm]  daher:  [mm] $X\left(\left[7*\frac{1}{2} \right]+1 \right)\;=\;X(4.)$ [/mm]  damit:  [mm] $Z\;=\;1020$ [/mm]


Oberes Quartil:  [mm] $7*\frac{3}{4}\;=\;5,25\;\;\not\in\;\IN$ [/mm]  daher:  [mm] $X\left(\left[7*\frac{3}{4} \right]+1 \right)\;=\;X(6.)$ [/mm]  damit:  [mm] $Q_o\;=\;1063$ [/mm]


Bei Bsp. 1 stimmt mein Ergebnis mit dem in der Lösung überein.




Bsp. 2    [mm] \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c} 1. & 2. & 3. & 4. & 5. & 6. & 7. & 8. & 9. & 10. & 11. & 12. & 13. & 14. & 15. & 16. & 17. & 18. & 19. & 20. & 21. & 22.\\ \hline 0 & 0 & 0 & 1 & 1 & 1 & 2 & 3 & 3 & 3 & 3 & 4 & 5 & 5 & 6 & 9 & 9 & 10 & 12 & 13 & 15 & 31 \\ \end{array} [/mm]


Unteres Quartil:  [mm] $22*\frac{1}{4}\;=\;5,5\;\;\not\in\;\IN$ [/mm]  daher:  [mm] $X\left(\left[22*\frac{1}{4} \right]+1 \right)\;=\;X(6.)$ [/mm]  damit:  [mm] $Q_u\;=\;1$ [/mm]


Zentralwert:  [mm] $22*\frac{1}{2}\;=\;11\;\;\in\;\IN$ [/mm]  daher:  [mm] $X\left(\frac{11.+12.}{2} \right)\;=\;\frac{3+4}{2}$ [/mm]  damit:  [mm] $Z\;=\;3,5$ [/mm]


Oberes Quartil:  [mm] $22*\frac{3}{4}\;=\;16,5\;\;\not\in\;\IN$ [/mm]  daher:  [mm] $X\left(\left[22*\frac{3}{4} \right]+1 \right)\;=\;X(17.)$ [/mm]  damit:  [mm] $Q_o\;=\;9$ [/mm]


Auch hier, bei Bsp. 2, stimmt mein Ergebnis mit dem in der Lösung überein.



Bsp. 3     [mm] \begin{array}{c|c|c|c|c|c|c} 1. & 2. & 3. & 4. & 5. & 6. & 7.\\ \hline 0 & 0 & 88 & 234 & 256 & 289 & 345 \\ \end{array} [/mm]


Unteres Quartil:  [mm] $7*\frac{1}{4}\;=\;1,75\;\;\not\in\;\IN$ [/mm]  daher:  [mm] $X\left(\left[7*\frac{1}{4} \right]+1 \right)\;=\;X(2.)$ [/mm]  damit:  [mm] $Q_u\;=\;0$ [/mm]


Zentralwert:  [mm] $7*\frac{1}{2}\;=\;3,5\;\;\not\in\;\IN$ [/mm]  daher:  [mm] $X\left(\left[7*\frac{1}{2} \right]+1 \right)\;=\;X(4.)$ [/mm]  damit:  [mm] $Z\;=\;234$ [/mm]


Oberes Quartil:  [mm] $7*\frac{3}{4}\;=\;5,25\;\;\not\in\;\IN$ [/mm]  daher:  [mm] $X\left(\left[7*\frac{3}{4} \right]+1 \right)\;=\;X(6.)$ [/mm]  damit:  [mm] $Q_o\;=\;289$ [/mm]



In der Lösung steht nun etwas völlig anderes:

unteres Quartil: 125    Zentralwert: 256   oberes Quartil: 331


Ich weiss nicht, wie diese Werte im Lösungsbuch berechnet worden sind.

(Höchstens den Zentralwert: indem man die Nullen einfach weglässt - dies im Gegensatz zum 2. Bsp.)

Ist mein Ergebnis fehlerhaft - oder stimmen die Werte im Buch nicht?


Vielen Dank im Voraus & allen ein gutes & gesundes Neues Jahr 2016,

Martinius

        
Bezug
Quartil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Mo 28.12.2015
Autor: M.Rex

Hallo

> Schulbuch: Schnittpunkt 6; Klett-Verlag; Realschule 10.
> Klasse; S. 11
> Hallo liebe Leute,

>

> ich bräuchte einmal Eure Hilfe bei der Berechnung von
> Quartilen bei gegebenen Ranglisten.

>

> Bsp. 1 [mm]\begin{array}{c|c|c|c|c|c|c} 1. & 2. & 3. & 4. & 5. & 6. & 7.\\ \hline 818 & 850 & 886 & 1020 & 1025 & 1063 & 1146 \\ \end{array}[/mm]

>
>

> Unteres Quartil: [mm]7*\frac{1}{4}\;=\;1,75\;\;\not\in\;\IN[/mm]
> daher: [mm]X%5Cleft(%5Cleft%5B7*%5Cfrac%7B1%7D%7B4%7D%20%5Cright%5D%2B1%20%5Cright)%5C%3B%3D%5C%3BX(2.)[/mm]
> damit: [mm]Q_u\;=\;850[/mm]

>
>

> Zentralwert: [mm]7*\frac{1}{2}\;=\;3,5\;\;\not\in\;\IN[/mm] daher:
> [mm]X\left(\left[7*\frac{1}{2} \right]+1 \right)\;=\;X(4.)[/mm]
> damit: [mm]Z\;=\;1020[/mm]

>
>

> Oberes Quartil: [mm]7*\frac{3}{4}\;=\;5,25\;\;\not\in\;\IN[/mm]
> daher: [mm]X\left(\left[7*\frac{3}{4} \right]+1 \right)\;=\;X(6.)[/mm]
> damit: [mm]Q_o\;=\;1063[/mm]

>
>

> Bei Bsp. 1 stimmt mein Ergebnis mit dem in der Lösung
> überein.

>
>
>
>

> Bsp. 2
> [mm]\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c} 1. & 2. & 3. & 4. & 5. & 6. & 7. & 8. & 9. & 10. & 11. & 12. & 13. & 14. & 15. & 16. & 17. & 18. & 19. & 20. & 21. & 22.\\ \hline 0 & 0 & 0 & 1 & 1 & 1 & 2 & 3 & 3 & 3 & 3 & 4 & 5 & 5 & 6 & 9 & 9 & 10 & 12 & 13 & 15 & 31 \\ \end{array}[/mm]

>
>

> Unteres Quartil: [mm]22*\frac{1}{4}\;=\;5,5\;\;\not\in\;\IN[/mm]
> daher: [mm]X%5Cleft(%5Cleft%5B22*%5Cfrac%7B1%7D%7B4%7D%20%5Cright%5D%2B1%20%5Cright)%5C%3B%3D%5C%3BX(6.)[/mm]
> damit: [mm]Q_u\;=\;1[/mm]

>
>

> Zentralwert: [mm]22*\frac{1}{2}\;=\;11\;\;\in\;\IN[/mm] daher:
> [mm]X\left(\frac{11.+12.}{2} \right)\;=\;\frac{3+4}{2}[/mm] damit:
> [mm]Z\;=\;3,5[/mm]

>
>

> Oberes Quartil: [mm]22*\frac{3}{4}\;=\;16,5\;\;\not\in\;\IN[/mm]
> daher: [mm]X\left(\left[22*\frac{3}{4} \right]+1 \right)\;=\;X(17.)[/mm]
> damit: [mm]Q_o\;=\;9[/mm]

>
>

> Auch hier, bei Bsp. 2, stimmt mein Ergebnis mit dem in der
> Lösung überein.

>
>
>

> Bsp. 3 [mm]\begin{array}{c|c|c|c|c|c|c} 1. & 2. & 3. & 4. & 5. & 6. & 7.\\ \hline 0 & 0 & 88 & 234 & 256 & 289 & 345 \\ \end{array}[/mm]

>
>

> Unteres Quartil: [mm]7*\frac{1}{4}\;=\;1,75\;\;\not\in\;\IN[/mm]
> daher: [mm]X%5Cleft(%5Cleft%5B7*%5Cfrac%7B1%7D%7B4%7D%20%5Cright%5D%2B1%20%5Cright)%5C%3B%3D%5C%3BX(2.)[/mm]
> damit: [mm]Q_u\;=\;0[/mm]

>
>

> Zentralwert: [mm]7*\frac{1}{2}\;=\;3,5\;\;\not\in\;\IN[/mm] daher:
> [mm]X\left(\left[7*\frac{1}{2} \right]+1 \right)\;=\;X(4.)[/mm]
> damit: [mm]Z\;=\;234[/mm]

>
>

> Oberes Quartil: [mm]7*\frac{3}{4}\;=\;5,25\;\;\not\in\;\IN[/mm]
> daher: [mm]X\left(\left[7*\frac{3}{4} \right]+1 \right)\;=\;X(6.)[/mm]
> damit: [mm]Q_o\;=\;289[/mm]

>
>
>

> In der Lösung steht nun etwas völlig anderes:

>

> unteres Quartil: 125 Zentralwert: 256 oberes Quartil:
> 331

>
>

> Ich weiss nicht, wie diese Werte im Lösungsbuch berechnet
> worden sind.

>

> (Höchstens den Zentralwert: indem man die Nullen einfach
> weglässt - dies im Gegensatz zum 2. Bsp.)

>

> Ist mein Ergebnis fehlerhaft - oder stimmen die Werte im
> Buch nicht?

Du hast korrekt gerechnet, die Ergebnisse des Buchs kann ich nicht nachvollziehen.

>
>

> Vielen Dank im Voraus & allen ein gutes & gesundes Neues
> Jahr 2016,

>

> Martinius

Marius

Bezug
                
Bezug
Quartil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Mo 28.12.2015
Autor: Martinius

Hallo Marius,

Dank Dir für das Prüfen!

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de