www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Quadratische Gleichung
Quadratische Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:17 Mo 17.05.2004
Autor: papapeter

Hallo,

ich möchte folgende Gleichung lösen:

[mm]\left(3x^2+6x+3\right)=9x\left(\bruch{1} {3}-\bruch{1} {3}x\right)^2 [/mm]

Wenn ich auf der rechten Seite die Klammer erst auflöse und danach mit 9x multipliziere erhalte ich den Ausdruck:

[mm]x - 2x^2 + x^3[/mm]
Hab ich das so richtig gemacht? Wenn ja, bitte einen Tip wie's weitergeht, wenn nein, bitte einen Tip was ich falsch gemacht habe. Auf der linken Seite dürfte es sich nach dem Ausklammern der 3 um das Binom
[mm]\left(x+1\right)^2 [/mm]   handeln. Vielleicht sind meine Mathekenntnisse ja inzwischen so weit eingerostet, dass es einer Überholung bedarf, aber dafür bin ich ja dann auch hier.

bis dahin


        
Bezug
Quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Mo 17.05.2004
Autor: Marc

Hallo papapeter,

willkommen im MatheRaum :-)!

> [mm]\left(3x^2+6x+3\right)=9x\left(\bruch{1} {3}-\bruch{1} {3}x\right)^2[/mm]

Links steht nicht zufällig [mm] $3x^2\red{-}6x+3$? [/mm]

> Wenn ich auf der rechten Seite die Klammer erst auflöse und
> danach mit 9x multipliziere erhalte ich den Ausdruck:
>  
> [mm]x - 2x^2 + x^3[/mm]
>  Hab ich das so richtig gemacht? Wenn ja,
> bitte einen Tip wie's weitergeht, wenn nein, bitte einen
> Tip was ich falsch gemacht habe. Auf der linken Seite
> dürfte es sich nach dem Ausklammern der 3 um das Binom
>  [mm]\left(x+1\right)^2[/mm]   handeln. Vielleicht sind meine
> Mathekenntnisse ja inzwischen so weit eingerostet, dass es
> einer Überholung bedarf, aber dafür bin ich ja dann auch
> hier.

Nein, ist alles richtig, würde ich sagen.
Woher stammt denn diese Aufgabe?
Die Gleichung hat eine Lösung, [mm] ($x_0\approx [/mm] 5.93$) aber ich weiß im Augenblick nicht, wie ich das --außer graphisch-- mit den Mitteln der 9./10. Klasse zeigen soll.

Viele Grüße,
Marc


Bezug
                
Bezug
Quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Di 18.05.2004
Autor: papapeter

Hallo marc,

die Aufgabe stammt aus dem Mathebuch meines Sohnes (9.Klasse, Gymnasium). Ich werde noch mal nachsehen ob es [mm]+6x[/mm] oder [mm]-6x[/mm] heißen muss. Wenn es ein Minuszeichen ist dann löst sich das ganze ja auf zu:
[mm]3*\left(x^2-2x+1\right)=x-2x^2+x^3[/mm]
Dann kann ich auf der rechten Seite auch die Termglieder in der Reihenfolge ihrer Potenzierung umdrehen und x ausklammern. Ich hätte dann folgendes Bild:
[mm]3*\left(x^2-2x+1\right)=x\left(x^2-2x+1\right)[/mm]
Dann wäre x=3 die Lösung, oder?

Bezug
                        
Bezug
Quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Di 18.05.2004
Autor: Julius

Hallo papapeter,

> die Aufgabe stammt aus dem Mathebuch meines Sohnes
> (9.Klasse, Gymnasium). Ich werde noch mal nachsehen ob es
> [mm]+6x[/mm] oder [mm]-6x[/mm] heißen muss. Wenn es ein Minuszeichen ist dann
> löst sich das ganze ja auf zu:
>  [mm]3*\left(x^2-2x+1\right)=x-2x^2+x^3[/mm]

[ok]

>  Dann kann ich auf der rechten Seite auch die Termglieder
> in der Reihenfolge ihrer Potenzierung umdrehen und x
> ausklammern. Ich hätte dann folgendes Bild:
>  [mm]3*\left(x^2-2x+1\right)=x\left(x^2-2x+1\right)[/mm]
>  Dann wäre x=3 die Lösung, oder?

Das wäre eine Lösung. Es gibt aber noch eine zweite! Die beiden Terme sind ja auch dann gleich, wenn sie beide gleich $0$ sind. Wann aber ist [mm] $x^2-2x+1=0$ [/mm] ?

Es gilt (2. Binomische Formel):

[mm] $0=x^2-2x+1 [/mm] = [mm] (x-1)^2$, [/mm]

also, wenn $x=1$ ist.

Es wäre also dann:

[mm] $\IL=\{1,3\}$. [/mm]

Liebe Grüße
Julius  


Bezug
                                
Bezug
Quadratische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Di 18.05.2004
Autor: papapeter

Hallo Julius,

danke für die Antwort, soweit ist dann alles klar! Ich schau jetzt noch mal nach, ob da wirklich kein Pluszeichen steht, wenn doch, meld ich mich nochmal. Bis dahin, beste Grüße an das Team!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de