www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Potenzen A_{n}
Potenzen A_{n} < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen A_{n}: Fibonacci
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 23.01.2012
Autor: perl

Aufgabe
Berechnen Sie alle Potenzen [mm] A_{n}, [/mm] n [mm] \in [/mm] N für die Matrix
A = [mm] \pmat{ 1 & -1 \\ -1 & 0 } [/mm]
sowie für die Matrix
B [mm] =\pmat{ 1 & 1 \\ 1 & 0 } [/mm]
mit Hilfe der Fibonacci-Zahlen [mm] f_{0} [/mm] = [mm] f_{1}=1, f_{n+1}=f_{n}+f_{n-1} [/mm] für n [mm] \ge [/mm] 1.



also ich versteh das so:

In der Angabe steht: [mm] f_{0} [/mm] = [mm] f_{1}=1 [/mm]
Also hab ich durch die beiden Funktionswerte einen gleichbedeutenden 2-dim. Vektor:
[mm] \vektor{f_{0} \\ f_{1}}=\vektor{1\\ 1} [/mm]

ich will es nun für alle potenzen verallgemeinern, dh. ich benutze die funktionswerte [mm] f_{n} [/mm] und [mm] f_{n+1} [/mm]
[mm] \vektor{f_{n} \\ f_{n+1}} [/mm]
jetzt kann ich das natürlich in eine Matrix-Vektor Kombi umschreiben:
[mm] \vektor{f_{n} \\ f_{n+1}}= \pmat{ 1 & -1 \\ -1 & 0 } \vektor{f_{n} \\ f_{n-1}} [/mm]
das ganze war jetzt rekusiv.
wie komm ich jetzt dann auf die nicht rekusive Formel?




        
Bezug
Potenzen A_{n}: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mo 23.01.2012
Autor: Blech

Hi,

so wie ich das verstehe, sollst Du

[mm] $A^2=A*A, A^3=A*A*A, A^4, \ldots$ [/mm] (und für B genauso)

berechnen. Dabei soll Dir auffallen, daß die Fibunaccizahlen irgendwo auftauchen.


ciao
Stefan

Bezug
        
Bezug
Potenzen A_{n}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Mo 23.01.2012
Autor: perl

Aufgabe
Betrachten Sie die lineare Abbildung f = [mm] \pmat{ 1 & 1 \\ 1 & 0 } [/mm] : [mm] R^{2}-->R^{2} [/mm] mit [mm] f(x,y)^{T} [/mm] = [mm] (x+y,x)^{T}. [/mm]
Zeigen sie allgemein für [mm] \vektor{x _{k}\\ y_{k}} [/mm] = [mm] f^{k}(e_{1} [/mm] die Rekursionsformeln
[mm] x_{0} [/mm] = 1, [mm] y_{0} [/mm] = 0,
[mm] x_{1} [/mm] = 1, [mm] y_{1} [/mm] = 1,

[mm] x_{k+1 }= x_{k} [/mm] + [mm] x_{k−1}, y_{k+1} [/mm] = [mm] x_{k} [/mm]

Ich hab die gleiche Aufgabe (denk ich mal) nur ein bischen anders geschrieben gefunden... also bezogen auf die 2. angegebene Matrix B.

In der Lösung wird zuerst
[mm] x_{0} [/mm] = 1, [mm] y_{0} [/mm] = 0,
[mm] x_{1} [/mm] = 1, [mm] y_{1} [/mm] = 1,
gezeigt (trivial)

Probleme hab ich dann bei [mm] x_{k+1 }= x_{k} [/mm] + [mm] x_{k−1}, y_{k+1} [/mm] = [mm] x_{k} [/mm]

[mm] f^{k+1}=\vektor{x _{k+1}\\ y_{k+1}} [/mm]

benutze ich jetzt die Abbildungsvorschrift die durch die Matrix B gegeben ist:
[mm] f\vektor{x \\ y}= \vektor{x+y \\ y} [/mm]

müsste ich doch irgendwie auf x _{k+1}=[] und  [mm] y_{k+1}=[] [/mm] kommen oder?

Bezug
                
Bezug
Potenzen A_{n}: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Mo 23.01.2012
Autor: leduart

Hallo
wenn du f auf [mm] e_i [/mm] anwendest hast du die zSpalten der matrix und die Formel für f, darus folgt die für [mm] f^2 [/mm] und schließlich [mm] f^k [/mm] durch Induktion.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de