www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Polynomdarstellung
Polynomdarstellung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mi 09.05.2018
Autor: Maxi1995

Hallo,
ich habe Fragen zu einem Beweis einer Darstellungsform des charakteristischen Polynoms. []Dort (S.96) Dort wird schlicht die Determinante berechnet, über die das charakteristische Polynom definiert ist.
1. Jetzt fehlt aber in dieser Darstellung meiner Ansicht nach im ersten zum zweiten Schritt ein Term vom Grad n-1. Oder tritt der nicht auf, weil er unter den Permutationen in der Leibniz – Formel nicht getroffen wird?
2. Am Ende des Beweises von Satz 7.14 wird für den Koeffizient $ a _0$ die Darstellung ermittelt, was mich zu der Frage bringt, warum dieser Koeffizient mit dem in [mm] $\chi [/mm] _ A (X) $ übereinstimmen soll?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynomdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mi 09.05.2018
Autor: leduart

Hallo
ich weiss nicht genau was du vom 1. zum 2 ten Schritt meinst aber überall kommt ja x^(n-1) vor?
hall0 wenn du das Polynom [mm] \Chi_A(x) [/mm] hinschreibst, und dann x =0 einsetzt kommt doch das einzige Glied, das kein x als Faktor hat raus, also [mm] a_0 [/mm]
gruß leduart

Bezug
                
Bezug
Polynomdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 09.05.2018
Autor: Maxi1995

Hallo Leduart,
danke für deine Antwort.
Ich wollte folgende Formulierung zu den Beweisschritten zu meiner Frage ergänzen:
[mm] $\det({\it X*E_n}-{\it A}) [/mm] =
[mm] \underline{(X-a_{11})\cdots(X-a_{nn})+ \text{Terme vom grad} \leq n-2} [/mm] =
[mm] X^{n}-\displaystyle \sum_{i=1}^{n}a_{ii}X^{n-1}+ \text{ Terme vom grad} \leq [/mm] n-2 =
[mm] X^{n} [/mm] - Spur (A) [mm] X^{n-1}+ \text{Terme vom grad} \leq [/mm] n-2 .
Schreiben wir [mm] $\chi_{A}(X)=X^{n}-\mathrm{S}\mathrm{p}\mathrm{u}\mathrm{r}(A)X^{n-1}+a_{n-2}X^{n-2}+ \cdots +a_{1}X+a_{0}$, [/mm] so ist $ [mm] a_{0}=\chi_{A}(0)=\det(0E_{n}-A)=\det(-A)=(-1)^{n}\det(\it [/mm] A)$.
Ich habe es oben noch einmal kurz angefügt und den Teil mit meiner Frage unterstrichen. Ich sehe wohl, dass da [mm] $X^{n-1}$ [/mm] vorkommt, frage mich aber, was mit Permutationen mit (n-1) Fixpunkten ist, die bringen mir doch auch noch [mm] $X^{n-1}$ [/mm] oder? Sind die schon abgedeckt, weil [mm] $(X-a_{11})\cdots(X-a_{nn})$ [/mm] ist in meinen Augen gerade [mm] $sgn(E_n)b_{11} \cdots b_{nn}$ [/mm] (wobei [mm] $b_{ii}$ [/mm] gerade die Diagonaleinträge von [mm] ${\it X*E_n}-{\it A} [/mm] $ sind). Da sollten doch noch mehr auftauchen oder täusche ich mich, wenn ja wieso?
Danke für den Hinweis, da war ich zu verbohrt.


Bezug
                        
Bezug
Polynomdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:55 Sa 19.05.2018
Autor: Maxi1995

Hallo,
kann mir vielleicht jemand meine als überfällig gekennzeichnete Frage beantworten, denn ich sehe wirklich nicht, was mit den Permutationen mit n-1 Fixpunkten passiert.

Bezug
                        
Bezug
Polynomdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:03 Mo 21.05.2018
Autor: meili

Hallo Maxi1995,

> Hallo,
>  kann mir vielleicht jemand meine als überfällig
> gekennzeichnete Frage beantworten, denn ich sehe wirklich
> nicht, was mit den Permutationen mit n-1 Fixpunkten
> passiert.

Wenn man von einer Menge mit n Elementen ausgeht, gibt es keine
Permutation mit n-1 Fixpunkten.

Wenn du schon n-1 Elemente aufgeschrieben hast (jedes an seinem
Fixpunkt), bleibt für das n-te Element nur noch eine Möglichkeit übrig.
Und da alle anderen an ihrem Fixpunkt sind, bleibt für das letzte nur
sein Fixpunkt übrig.

Gruß
meili

Bezug
                                
Bezug
Polynomdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Mo 21.05.2018
Autor: Maxi1995

Vielen Dank, das habe ich nicht gesehen. Manchmal habe ich ein Brett vor dem Kopf.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 46m 2. fred97
ULinAEw/Negative Eigenwerte beweisen
Status vor 10h 51m 3. rubi
UAnaR1FolgReih/Cauchy Folge
Status vor 14h 11m 3. nosche
SPhy/feste und lose Rolle
Status vor 14h 30m 15. nosche
test/test
Status vor 15h 34m 2. Al-Chwarizmi
SStoc/Erwartungswert Binomial
^ Seitenanfang ^
www.vorhilfe.de