www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "z-transformation" - Partialbruchzerlegung
Partialbruchzerlegung < z-transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Komplexe Nullstelle
Status: (Frage) beantwortet Status 
Datum: 22:00 Mo 19.03.2007
Autor: andytaschenrechner

Aufgabe
Aufgabe ist es eine Funktion aus dem z-Bereich in den Zeit-Bereich zurückzutransformieren (Schlagwort Z-Transformation). Auf dem Lösungsweg muss folgende Übertragungsfunktion in ihre Partialbrüche zerlegt werden:
[mm]H(z)[/mm] = [mm] \bruch{z^2}{z^2-\wurzel{3}z+1}[/mm].

In anderen ähnlichen Aufgaben hat es sich jedoch als einfacher herausgestellt zunächst die Funktion

[mm]\bruch{H(z)}{z}[/mm] = [mm] \bruch{z}{z^2-\wurzel{3}z+1}[/mm]
zu betrachten. Hiervon interessiert mich also die Partialbruchzerlegung!

Vorgehensweise wie immer:
1. Nullstellen des Nenners finden:

Also [mm]z^2-\wurzel{3}z+1[/mm] = [mm]0[/mm]

Nun die p,q-Formel benutzen:

[mm]z_{1,2}[/mm] = [mm]\bruch{\wurzel{3}}{2}\pm\wurzel{\bruch{3}{4}-1}[/mm]

Es ergeben sich folgende komplexe Nullstellen:

[mm]z_1[/mm] = [mm]\bruch{\wurzel{3}}{2}+\bruch{i}{2}[/mm]
[mm]z_2[/mm] = [mm]\bruch{\wurzel{3}}{2}-\bruch{i}{2}[/mm]

Also eine Zahl [mm]z[/mm] und ihre konjugiert komplexe [mm]z^{\*}[/mm]

Soweit so gut!

Aber weiter komm ich nicht!

Meine Versuche [mm]H(z)[/mm] durch Partialbrüche auszudrücken führten zu keiner Lösung, weil ich nicht wusste, wie ich den Nenner hinschreiben soll. Die Darstellung wie bei rein reellen Zahlen
[mm] \bruch{A}{(z+z_i)} [/mm]

ist wegen der komplexen Zahlen doch nicht anwendbar oder?

Ich habe im Internet allerdings eine mögliche Darstellung gefunden, welche mir aber auch nicht weiterhilft, da sie keine Vereinfachung des Terms gebracht hat:

Hierbei gilt für ein Paar Nullstellen [mm]z[/mm] und ihre konjugiert komplexe [mm]z^{\*}[/mm]
mit [mm] z [/mm] = [mm] a + ib [/mm]:

[mm]\bruch{H(z)}{z}[/mm] = [mm] \bruch{z}{z^2-\wurzel{3}z+1}[/mm] = [mm]\bruch{A*z+B}{(z-a)^2+b^2}[/mm]

Der Koeffizientenvergleich bringt A = 1 und B = 0, was mir nichts bringt, weil ich dann wieder bei meiner ursprünglichen Darstellung angelangt bin....


Ziel ist es mittels der Partialbruchzerlegung eine vereinfachte Darstellung von [mm]H(z)[/mm] zu finden. Diese Darstellung möchte ich dann mit einer Tabelle/Formelsammlung zur Z-Transformation abgleichen, In dieser Tabelle stehen Terme im Z-Bereich und deren Rücktransformierte!

Falls jemand näheres zur Z-Transformation wissen möchte muss dieser Wunsch nur geposted werden, ich werde dann alles zum Besten geben, was ich davon weiß =)


Vielen Dank für eure Hilfe,

Andy

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mo 19.03.2007
Autor: schachuzipus

Hallo Andy,

ich denke, du kannst die PBZ ganz normal anwenden:

[mm] \bruch{H(z)}{z}=\bruch{z}{z^2-\wurzel{3}z+1} [/mm]

[mm] =\bruch{z}{\left(z-(\bruch{\wurzel{3}}{2}-\bruch{i}{2})\right)\left(z-(\bruch{\wurzel{3}}{2}+\bruch{i}{2})\right)}=\bruch{z}{(z-\bruch{\wurzel{3}}{2}+\bruch{i}{2})(z-\bruch{\wurzel{3}}{2}-\bruch{i}{2})}=\bruch{A}{z-\bruch{\wurzel{3}}{2}+\bruch{i}{2}}+\bruch{B}{z-\bruch{\wurzel{3}}{2}-\bruch{i}{2}} [/mm]

[mm] =\bruch{A(z-\bruch{\wurzel{3}}{2}-\bruch{i}{2})+B(z-\bruch{\wurzel{3}}{2}+\bruch{i}{2})}{\left(z-(\bruch{\wurzel{3}}{2}-\bruch{i}{2})\right)\left(z-(\bruch{\wurzel{3}}{2}+\bruch{i}{2})\right)}=\bruch{(A+B)z+(\bruch{1}{2}B(i-\wurzel{3})+\bruch{1}{2}A(-\wurzel{3}-i))}{z^2-\wurzel{3}z+1} [/mm]

Koeffizientenvergleich liefert:

(1) A+B=1 [mm] \Rightarrow [/mm] A=1-B

(2) [mm] \bruch{1}{2}B(i-\wurzel{3})+\bruch{1}{2}A(-\wurzel{3}-i)=0 [/mm]

A=1-B in (2) einsetzen ergibt nach einiger Rechnerei:

[mm] -\bruch{\wurzel{3}}{2}+(B-\bruch{1}{2})i=0 \Rightarrow Bi=\bruch{1}{2}(\wurzel{3}+i) \Rightarrow \red{B}=\bruch{1}{2}\bruch{\wurzel{3}+i}{i}=\red{\bruch{1}{2}-\bruch{\wurzel{3}}{2}i} [/mm]

Und damit [mm] \green{A=\bruch{1}{2}+\bruch{\wurzel{3}}{2}i} [/mm]

Folglich [mm] \bruch{H(z)}{z}=\bruch{z}{z^2-\wurzel{3}z+1}=\bruch{\green{\bruch{1}{2}+\bruch{\wurzel{3}}{2}i}}{z-\bruch{\wurzel{3}}{2}+\bruch{i}{2}}+\bruch{\red{\bruch{1}{2}-\bruch{\wurzel{3}}{2}i}}{z-\bruch{\wurzel{3}}{2}-\bruch{i}{2}} [/mm]


Puh, ich hoffe, ich hab mich da mal nicht verrechnet ;-)


Schönen Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de