www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Parameterdarstellungen
Parameterdarstellungen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterdarstellungen: Was soll ich machen?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:39 Di 27.11.2007
Autor: nutzer

Aufgabe
Die Schnittgeraden der Ebene E mit den Koordinatenebenen heißen die Spurgeraden von E. Bestimme Parameterdarstellungen der Spurgeraden S12,S13, S23.

[mm] [latex]E:\vec{x} =\begin{pmatrix} 4 \\ 5 \\ 0\end{pmatrix} [/mm] + [mm] s\cdot \begin{pmatrix} 1 \\ 3 \\ 5\end{pmatrix} [/mm] + [mm] t\cdot \begin{pmatrix} 1 \\ -1 \\ 1\end{pmatrix} [/mm] [/latex]

Ich weiß nicht, was ich hier machen soll.. soll ich die Gleichung nach einem Parameter umstellen und wenn ja, wie? bei mir funktioniert das nicht.

        
Bezug
Parameterdarstellungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Di 27.11.2007
Autor: mathemak

Hallo!

Wo sind Deine Ansätze? Was hast Du schon probiert?

Zur Erklärung

http://de.wikipedia.org/wiki/Spurgerade

Was gilt für eine Gerade, die in der [mm] $x_1x_2$-Ebene [/mm] enthalten ist? Die Spurgerade [mm] $s_{12}$ [/mm] Deiner Ebene $E$ ist ganz in der [mm] $x_1x_2$-Ebene [/mm] enthalten.

Gruß

mathemak

Bezug
                
Bezug
Parameterdarstellungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Di 27.11.2007
Autor: nutzer

Aufgabe
Die Schnittgeraden der Ebene E mit den Koordinatenebenen heißen die Spurgeraden von E. Bestimme Parameterdarstellungen der Spurgeraden S12,S13, S23.

also, so weit ich  verstanden habe, müsste man die Schnittpunkte der Ebene mit den Koordinatenachsen bestimmen..

Ich habe das so gemacht:

[mm] [latex]E:\vec{x} =\begin{pmatrix} 4 \\ 5 \\ 0\end{pmatrix} [/mm] + [mm] s\cdot \begin{pmatrix} 1 \\ 3 \\ 5\end{pmatrix} [/mm] + [mm] t\cdot \begin{pmatrix} 1 \\ -1 \\ 1\end{pmatrix} [/mm] = [mm] \begin{pmatrix} 0\\ 0 \\ 0\end{pmatrix} [/mm] + [mm] r\cdot \begin{pmatrix}0,5\\ 0\\ 0 \end{pmatrix} [/mm] [/latex]

dabei kommen die Koordinaten für S1 [mm] [latex]\begin{pmatrix} 51/8 \\ 1/4 \\ 57/1\end{pmatrix} [/mm] [/latex]

das scheint mir unlogisch zu sein...

ich habe die Punkte für S3 ausgerechnet, aber nach meiner Zeichnung kommt das nicht hin.

[latex]S3 = [mm] \begin{pmatrix} 0 \\ 4,5\\ -13 \end{pmatrix} [/mm] [/latex]



Bezug
                        
Bezug
Parameterdarstellungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Di 27.11.2007
Autor: mathemak

[mm]E:\vec{x} =\begin{pmatrix} 4 \\ 5 \\ 0\end{pmatrix} + s\cdot \begin{pmatrix} 1 \\ 3 \\ 5\end{pmatrix}+ t\cdot \begin{pmatrix} 1 \\ -1 \\ 1\end{pmatrix}[/mm]


Mach' mal folgendes

Für die Spurgerade mit der [mm] $x_1x_2$-Ebene [/mm] muss gelten:

[mm] $x_3=0$. [/mm]

Aus der Ebenengleichung in Parameterform

[mm] $x_3=0 [/mm] + [mm] 5\,s [/mm] + t$

Gleichgesetzt:

$ 0 = [mm] 5\,s [/mm] + t$

oder

[mm] $t=-5\,s$ [/mm]

Setze das jetzt in die Ebenengleichung ein und Du erhälst die Gleichung der Spurgeraden [mm] $s_{12}$: [/mm]

[mm]E:\vec{x} =\begin{pmatrix} 4 \\ 5 \\ 0\end{pmatrix} + s\cdot \begin{pmatrix} 1 \\ 3 \\ 5\end{pmatrix} -5\,s\cdot \begin{pmatrix} 1 \\ -1 \\ 1\end{pmatrix}[/mm]

Zusammenfassen ... fertig.

Über die Spurpunkte geht es auch.

Gruß

mathemak








Bezug
                                
Bezug
Parameterdarstellungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Di 27.11.2007
Autor: nutzer

Ich möchte mich für deine schnelle und vor allem hilfreiche  Antwort bedanken!!!! :)))))

Schöne Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de