www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Nichtlineare DGL
Nichtlineare DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichtlineare DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Fr 07.06.2013
Autor: Epsilongroesser0

Aufgabe
Löse: y''=y'*y
y(0) = 0
y'(0) = 1

Hallo!
Obige Aufgabe.
Ich substituiere v(y) = y'

Dann bekomme ich: v'(y)*v(y)=y*v(y)
Weiters v'(y) = y. Dann integriere ich beide Seiten und Rücksubstituiere
Und bin bei: [mm] \bruch{y'}{c1+\bruch{y^2}{2}} [/mm] = 1. Das integriere ich nun nach x und bekomme nach bisschen Umformung:

[mm] y=\wurzel(2)*\wurzel(c1)*tan(\bruch{\wurzel(c1)*(x+c2)}{\wurzel(2)}) [/mm]

Das ist der Weg wie ihn Wolframalpha vorschlägt. Gibt es da was eleganteres (einfacheres)? Vor allem wenn ich jetzt den ganzen Spaß noch einmal ableiten darf für die Anfangsbedingung ist das doch recht Rechenintensiv.
Und das Tangensintegral muss man auch erst einmal erkennen.
Gibt es da nichts besseres? Irgendwie die Anfangswerte schon vorher in die Gleichungen einbauen hab ich mir gedacht.

Bin auch über jeden Link (YT-Tutorial etc.) dankbar damit ich solche Aufgaben besser verstehe.

Besten Dank!



        
Bezug
Nichtlineare DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Fr 07.06.2013
Autor: MathePower

Hallo Epsilongroesser0,

> Löse: y''=y'*y
>  y(0) = 0
>  y'(0) = 1
>  Hallo!
>  Obige Aufgabe.
>  Ich substituiere v(y) = y'
>  
> Dann bekomme ich: v'(y)*v(y)=y*v(y)
>  Weiters v'(y) = y. Dann integriere ich beide Seiten und
> Rücksubstituiere
>  Und bin bei: [mm]\bruch{y'}{c1+\bruch{y^2}{2}}[/mm] = 1. Das


Hier kannst Du doch schon die Anfangsbedingungen einsetzen
und somit die Konstante c1 bestimmen.


> integriere ich nun nach x und bekomme nach bisschen
> Umformung:
>  
> [mm]y=\wurzel(2)*\wurzel(c1)*tan(\bruch{\wurzel(c1)*(x+c2)}{\wurzel(2)})[/mm]
>  
> Das ist der Weg wie ihn Wolframalpha vorschlägt. Gibt es
> da was eleganteres (einfacheres)? Vor allem wenn ich jetzt
> den ganzen Spaß noch einmal ableiten darf für die
> Anfangsbedingung ist das doch recht Rechenintensiv.
> Und das Tangensintegral muss man auch erst einmal erkennen.
> Gibt es da nichts besseres? Irgendwie die Anfangswerte
> schon vorher in die Gleichungen einbauen hab ich mir
> gedacht.
>  
> Bin auch über jeden Link (YT-Tutorial etc.) dankbar damit
> ich solche Aufgaben besser verstehe.
>  
> Besten Dank!
>


Gruss
MathePower  

Bezug
                
Bezug
Nichtlineare DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 So 09.06.2013
Autor: Epsilongroesser0

Stimmt!

Hast du einen Tipp wie man sieht, dass das ein Tangens Integral ist?
Bzw. ich hab bei einem anderen DGL-BSP dieser Art: [mm] \int{\bruch{y'}{-e^{-y}+c1}} [/mm]

Woran sehe ich, dass dies z.b. ein [mm] \bruch{ln(-(c1*e^{y})+1)}{c1} [/mm] werden soll oder wie würde ich das von Hand rechnen?

Besten Dank schon einmal.



Bezug
                        
Bezug
Nichtlineare DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 So 09.06.2013
Autor: leduart

Hallo
Man sollte. Integranden der Form f'/f bis auf Konstanten erkennen,wegen ( lny)'= y'/y
Entsprechend  [mm] (\sqrt(y))' [/mm]
Gruß  leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de