www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Nenner rational machen?
Nenner rational machen? < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nenner rational machen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Fr 13.07.2007
Autor: Dhana

Aufgabe
[mm]\bruch{1}{1 + \wurzel[3]{3}}[/mm]

Wie mache ich da den Nenner rational? Bin kurz davor zu behaupten, daß das garnicht geht ;(

        
Bezug
Nenner rational machen?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Fr 13.07.2007
Autor: Stefan-auchLotti


> [mm]\bruch{1}{1 + \wurzel[3]{3}}[/mm]
>  Wie mache ich da den Nenner
> rational? Bin kurz davor zu behaupten, daß das garnicht
> geht ;(

Hi,

Doch.

hier musst du mit [mm] $1-\sqrt[3]{3}$ [/mm] erweitern und die 3. binomische Formel anwenden. Danach noch mal erweitern, diesmal jedoch mit [mm] $1+\wurzel[3]{9}$ [/mm] und wieder die 3. binomische Formel. Alles klar, warum?

Grüße, Stefan.

Bezug
                
Bezug
Nenner rational machen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Fr 13.07.2007
Autor: Dhana

Also wenn ich das mache habe ich im Nenner

[mm]1 - \wurzel[3]{81} = 1 - 3\wurzel[3]{3}[/mm]

und keine rationale Zahl, oder hab ich mich verrechnet?

Bezug
                        
Bezug
Nenner rational machen?: nicht verrechnet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 Fr 13.07.2007
Autor: Loddar

Hallo Dhana!


Du hast Dich nicht verrechnet ... siehe meine Antwort.


Gruß
Loddar


Bezug
        
Bezug
Nenner rational machen?: anderer Ansatz
Status: (Antwort) fertig Status 
Datum: 20:02 Fr 13.07.2007
Autor: Loddar

Hallo Dhana!


Gemäß [mm] $1+x^3 [/mm] \ = \ [mm] (1+x)*\left(1-x+x^2\right)$ [/mm] solltest Du Deinen Bruch mit dem Term [mm] $1-\wurzel[3]{3}+\wurzel[3]{3^2} [/mm] \ = \ [mm] 1-\wurzel[3]{3}+\wurzel[3]{9}$ [/mm] erweitern.


Gruß
Loddar


Bezug
                
Bezug
Nenner rational machen?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Fr 13.07.2007
Autor: Dhana

Vielen Dank!!!! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de