www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Nachweis Bijektivität
Nachweis Bijektivität < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis Bijektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:22 Mo 05.11.2018
Autor: rubi

Aufgabe
Zeige, dass die Funktion f: [mm] \IN_0 [/mm] X [mm] \IN_0 \to \IN_0 [/mm] mit f(k,n) = [mm] 2^k*(2n+1)-1 [/mm] bijektiv ist.

Hallo zusammen,

mir ist zwar schon klar, dass die Funktion bijektiv ist, die Frage ist nur, wie man das mathematisch exakt aufschreiben kann.

Ich habe mir folgendes überlegt:
Nachweis Injektivität:
Sei y = [mm] 2^k*(2n+1) [/mm] - 1.

A) Wenn y gerade ist, dann ist y + 1 = [mm] 2^k*(2n+1) [/mm] ungerade.
Somit muss k = 0 sein und es gibt ein eindeutiges n mit y +1 = 2n+1.

B) Wenn y ungerade ist dann ist y + 1 = [mm] 2^k*(2n+1) [/mm] gerade.
Jede gerade Zahl kann als eindeutiges Produkt einer Zweierpotenz mit einer ungeraden Zahl dargestellt werden.


Nachweis Surjektivität:
Zu zeigen ist, dass jede Zahl aus [mm] \IN_0 [/mm] erreicht werden kann.
Wie kann ich das formal aufschreiben, dass dem so ist ?

Auch der Fall B) bei der Injektivität finde ich so noch recht schwammig hingeschrieben, mir fällt aber nichts besseres ein.

Kann mir jemand von euch weiterhelfen ?

Viele Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.



        
Bezug
Nachweis Bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mo 05.11.2018
Autor: hippias


> Zeige, dass die Funktion f: [mm]\IN_0[/mm] X [mm]\IN_0 \to \IN_0[/mm] mit
> f(k,n) = [mm]2^k*(2n+1)-1[/mm] bijektiv ist.
>  Hallo zusammen,
>
> mir ist zwar schon klar, dass die Funktion bijektiv ist,
> die Frage ist nur, wie man das mathematisch exakt
> aufschreiben kann.
>
> Ich habe mir folgendes überlegt:
>  Nachweis Injektivität:
>  Sei y = [mm]2^k*(2n+1)[/mm] - 1.

Achtung, wenn Du so den Beweis der Injektivität so anfängst, dann könnte ein oberflächlicher Leser vermuten, dass Du Injektivität mit Surjektivität verwechselst.

>  
> A) Wenn y gerade ist, dann ist y + 1 = [mm]2^k*(2n+1)[/mm] ungerade.
> Somit muss k = 0 sein und es gibt ein eindeutiges n mit y
> +1 = 2n+1.
>  
> B) Wenn y ungerade ist dann ist y + 1 = [mm]2^k*(2n+1)[/mm] gerade.
> Jede gerade Zahl kann als eindeutiges Produkt einer
> Zweierpotenz mit einer ungeraden Zahl dargestellt werden.

Daran ist nichts auszusetzen, wenn die von Dir zitierten Aussagen nicht weiter bewiesen werden müssen. Ich würde aber auf jeden Fall noch ergänzen, dass $k$ und $n$ jeweils aus [mm] $\IN_{0}$ [/mm] gewählt werden können.

>
>
> Nachweis Surjektivität:
> Zu zeigen ist, dass jede Zahl aus [mm]\IN_0[/mm] erreicht werden
> kann.
> Wie kann ich das formal aufschreiben, dass dem so ist ?

Ich würde die selben Sätzen anwenden, die Du auch schon oben verwendet hast.

>
> Auch der Fall B) bei der Injektivität finde ich so noch
> recht schwammig hingeschrieben, mir fällt aber nichts
> besseres ein.
>
> Kann mir jemand von euch weiterhelfen ?
>
> Viele Grüße
>  Rubi
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
>  


Bezug
        
Bezug
Nachweis Bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Mo 05.11.2018
Autor: luis52

Moin, zur Injektivitaet: Wenn du nicht, wie zurecht beanstandet, mit einer unbewiesenen Behauptung argumentieren moechtest, so meine ich, dass der direkte Weg schnell zum Ziel fuehrt: Seien [mm] $k,n,l,m\in\IN_0$ [/mm] mit $f(k,n)=f(l,n)$. Zeige, dass dann folgt $k=l$ und $n=m$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de