www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Multi.. bei Brüchen u. kürzen
Multi.. bei Brüchen u. kürzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multi.. bei Brüchen u. kürzen: Korrektur und Frage
Status: (Frage) beantwortet Status 
Datum: 21:30 Do 25.09.2008
Autor: vlue

Aufgabe
[mm] \bruch{a+b}{a-b}*(b-a)² [/mm]

mein weg war bei diesen bruch folgend
[mm] \bruch{a+b}{a-b}*\frac{(b-a)*(b-a)}{1} [/mm]
[mm] \frac{(a+b)*(b-a)*(b-a)}{(a-b)*1} [/mm]
bis hier sieht es relativ richtig aus finde ich wenn ich aber das binom ausmultiplizier und auch mit dem obigen (a+b) kommt ein undurchdringbares chaos heraus kürzen darf ich (a-b) und (b-a) wohl nicht oder habe ich komplett falsch angelegt oder bin ich auf den richtigen weg
danke im voraus für die hilfe
´vlue
#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Multi.. bei Brüchen u. kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Do 25.09.2008
Autor: Bastiane

Hallo vlue!

> [mm]\bruch{a+b}{a-b}*(b-a)²[/mm]
>  
> mein weg war bei diesen bruch folgend
> [mm]\bruch{a+b}{a-b}*\frac{(b-a)*(b-a)}{1}[/mm]
>  [mm]\frac{(a+b)*(b-a)*(b-a)}{(a-b)*1}[/mm]
>  bis hier sieht es relativ richtig aus finde ich wenn ich
> aber das binom ausmultiplizier und auch mit dem obigen
> (a+b) kommt ein undurchdringbares chaos heraus kürzen darf
> ich (a-b) und (b-a) wohl nicht oder habe ich komplett
> falsch angelegt oder bin ich auf den richtigen weg

Doch doch, das ist schon richtig so. Du könntest den Nenner (a-b) umformen zu -(b-a) und dann kürzen, oder du konzentrierst dich einfach beim Ausmuliplizieren und multiplizierst zuerst (a+b) mit (b-a), schreibst das Ganze schön in Klammern und multiplizierst dies dann mit (b-a). Allerdings ist der Weg mit dem Kürzen schöner, weil das Ergebnis so insgesamt kürzer wird.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Multi.. bei Brüchen u. kürzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Do 25.09.2008
Autor: vlue

Danke für die hilfe also  nun hab ich
[mm] \bruch{(a+b)*(b-a)}{-1} [/mm]
das obige multip.. ergibt
[mm] \bruch{ab-a²+b²-ba}{-1} [/mm]
[mm] \bruch{-a²+b²}{-1} [/mm]
kann man dieses ergebniss noch vereinfachen ist es überhaupt richtig und
wie sieht das mit dem -1 aus muss man das - auch kürzen also oben vorzeichen ändern?

Bezug
                        
Bezug
Multi.. bei Brüchen u. kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Do 25.09.2008
Autor: abakus


> Danke für die hilfe also  nun hab ich
> [mm]\bruch{(a+b)*(b-a)}{-1}[/mm]
>  das obige multip.. ergibt
>  [mm]\bruch{ab-a²+b²-ba}{-1}[/mm]
>  [mm]\bruch{-a²+b²}{-1}[/mm]
>  kann man dieses ergebniss noch vereinfachen ist es
> überhaupt richtig und
>  wie sieht das mit dem -1 aus muss man das - auch kürzen
> also oben vorzeichen ändern?

Hallo,
erweitere doch deinen Bruch mit (-1).
Gruß Abakus

Bezug
                                
Bezug
Multi.. bei Brüchen u. kürzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Do 25.09.2008
Autor: vlue

$ [mm] \bruch{(-a²+b²)*-1}{-1*-1} [/mm] $
[mm] =\bruch{a²-b²}{1} [/mm]
a²-b² wäre dies eine bin.Formel? also a²-2ab+b²?

Bezug
                                        
Bezug
Multi.. bei Brüchen u. kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Do 25.09.2008
Autor: schachuzipus

Hallo vlue,

> [mm]\bruch{(-a²+b²)*-1}{-1*-1}[/mm]
>  [mm]=\bruch{a²-b²}{1}[/mm] [daumenhoch]
>  a²-b² wäre dies eine bin.Formel?

Ja, das ist sogar eine ;-)

> also a²-2ab+b²? [notok]

Nein, die 2. binomische Formel ist es nicht, aber die 3.: [mm] $(a+b)\cdot{}(a-b)=a^2-b^2$ [/mm]


LG

schachuzipus


Bezug
                                                
Bezug
Multi.. bei Brüchen u. kürzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Do 25.09.2008
Autor: vlue

oh mein gott ich bin ja blind )=
danke das hat mir auch bei einer anderen aufgabe grad sehr geholfen^^

Bezug
        
Bezug
Multi.. bei Brüchen u. kürzen: Info
Status: (Antwort) fertig Status 
Datum: 21:56 Do 25.09.2008
Autor: smarty

Hallo,

du hättest auch gleich kürzen können, denn [mm] (b-a)^2=(a-b)^2 [/mm]


Grüße
Smarty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de