www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lineare Differentialgleichung
Lineare Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Differentialgleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:42 Do 21.10.2010
Autor: bjoern.g

Aufgabe
y'' + 2y' + 2y = 5sin(x)

y(0) = -4

y'(0) = 4

Hallo ich habe Versucht die Gleichung inkl. Anfangswertproblem zu lösen:

Folgendes:

Homogone Lösung habe ich erstellt:

NS Char.Polynom sind komplex --> [mm] \lambda_{1/2} [/mm] = -1 [mm] \pm [/mm] j

yn = C1 * [mm] e^{-x} [/mm] * cos(x) - C2 * [mm] e^{-x} [/mm] * sin(x)

Anschließend die Vorfaktoren für cos und sin berechnet

y'' + 2y' + 2y = cos(x) [2B+A] + sin(x) [-2A+B]


--> 2B+A = 0 und -2A+B = 5

Somit gilt : B = 1 und A = -2

Nun das AWP:

y(0) = C1 * [mm] e^{-0} [/mm] * cos(0) - C2 * [mm] e^{-0} [/mm] * sin(0) = C1 * [mm] e^{-0} [/mm] * cos(0)

--> y(0) = 4 = C1

y(0)' = C1 [mm] [-e^{-0} [/mm] *cos(x) - [mm] e^{-0} [/mm] *sin(x)] + C2 [ [mm] e^{-0} [/mm] *sin(x) -  
                 [mm] e^{-0} [/mm] *cos(x)]

--> y(0) = -C1-C2  = 4
--> C2 = -8

--> somit müsste die Lösung sein y(x) = [mm] 8e^{-x}*(cosx+sinx) [/mm]

Habe allerdings die Lösung und dort kommt heraus:

y(x) = [mm] (e^{-x} [/mm] +1)(sinx -2cosx)

Jetzt ist die Frage : Wo ist der Fehler???

Habe das leider schon länger nicht mehr gemacht und benötige Hilfe :(

Vielen Dank im Voraus!












        
Bezug
Lineare Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Do 21.10.2010
Autor: fencheltee


> y'' + 2y' + 2y = 5sin(x)
>  
> y(0) = -4
>  
> y'(0) = 4
>  Hallo ich habe Versucht die Gleichung inkl.
> Anfangswertproblem zu lösen:
>  
> Folgendes:
>  
> Homogone Lösung habe ich erstellt:
>  
> NS Char.Polynom sind komplex --> [mm]\lambda_{1/2}[/mm] = -1 [mm]\pm[/mm] j
>  
> yn = C1 * [mm]e^{-x}[/mm] * cos(x) - C2 * [mm]e^{-x}[/mm] * sin(x)

das sieht gut aus

>  
> Anschließend die Vorfaktoren für cos und sin berechnet
>  
> y'' + 2y' + 2y = cos(x) [2B+A] + sin(x) [-2A+B]
>  
>
> --> 2B+A = 0 und -2A+B = 5
>
> Somit gilt : B = 1 und A = -2

was hast du da gerechnet?
ich habe als vorfaktor für den sin: 1 und für den cosinus: -2

>  
> Nun das AWP:
>  
> y(0) = C1 * [mm]e^{-0}[/mm] * cos(0) - C2 * [mm]e^{-0}[/mm] * sin(0) = C1 *
> [mm]e^{-0}[/mm] * cos(0)

das awp musst du für die summe aus homogener und spezieller lösung machen!

>  
> --> y(0) = 4 = C1
>  
> y(0)' = C1 [mm][-e^{-0}[/mm] *cos(x) - [mm]e^{-0}[/mm] *sin(x)] + C2 [ [mm]e^{-0}[/mm]
> *sin(x) -  
> [mm]e^{-0}[/mm] *cos(x)]
>  
> --> y(0) = -C1-C2  = 4
>  --> C2 = -8

>  
> --> somit müsste die Lösung sein y(x) =
> [mm]8e^{-x}*(cosx+sinx)[/mm]
>  
> Habe allerdings die Lösung und dort kommt heraus:
>
> y(x) = [mm](e^{-x}[/mm] +1)(sinx -2cosx)
>  
> Jetzt ist die Frage : Wo ist der Fehler???
>  
> Habe das leider schon länger nicht mehr gemacht und
> benötige Hilfe :(
>  
> Vielen Dank im Voraus!
>
>
>
>
>
>
>
>
>
>
>  


Bezug
                
Bezug
Lineare Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Do 21.10.2010
Autor: bjoern.g

Ja das ist Richtig

Vorfaktor für sin ist 1 und für den cos -2 !

Sorry wenn das nicht verständlich war.

Könntest du das mit dem AWP nochmal verdeutlichen, weis nicht wie ich da jetzt vorgehen soll?

Danke!

Bezug
                        
Bezug
Lineare Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Do 21.10.2010
Autor: fencheltee


> Ja das ist Richtig
>
> Vorfaktor für sin ist 1 und für den cos -2 !
>  
> Sorry wenn das nicht verständlich war.
>  
> Könntest du das mit dem AWP nochmal verdeutlichen, weis
> nicht wie ich da jetzt vorgehen soll?
>  
> Danke!

die homogene lösung hattest du ja richtig:
[mm] y_h={e}^{-x}\\left( c_1,sin\left( x\right) +c_2cos\left( x\right) \right) [/mm]
die partikuläre lösung war bei dir:
[mm] y_p=sin\left( x\right) -2\,cos\left( x\right) [/mm]
also ist deine "gesamte" lösung:
[mm] y=y_h+y_p [/mm]
und damit jetzt das AWP lösen

gruß tee

Bezug
                                
Bezug
Lineare Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Do 21.10.2010
Autor: bjoern.g

Achso war das , ok ich probiers morgen mal falls noch eine Frage ist, Poste ich nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de