www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Kurvenverhalten
Kurvenverhalten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenverhalten: Rechts oder Linkskurve?
Status: (Frage) beantwortet Status 
Datum: 18:06 Sa 24.02.2007
Autor: MontBlanc

Aufgabe
Gegeben ist [mm] f''(x)=x^{2}-x-2 [/mm]

Inwelchen bereichen macht der Graph von f eine Links- bzw. Rechtskurve ?

Hi,

also ich habe mir das folgendermaßen überlegt:

Man setzt f''(x)=0 damit erhält man die Nullstellen [mm] x_{1}=-1 [/mm] und [mm] x_{2}=2 [/mm] .

Die Nullstellen sind ja bekanntermaßen Kandidaten für einen Wendepunkt. Nun benutze ich das Vorzeichenwechselkriterium und sehe: Bei [mm] x_{1}=-1 [/mm] findet ein Vorzeichenwechsel von + nach - statt, also geht eine Links in eine Rechtskurve über.
Bei [mm] x_{2}=2 [/mm] findet ein Vorzeichenwechsel von - nach + statt, also geht eine Rechts in eine Linkskurve.

D.h bei x<-1 ist hat der Graph von f eine Linkskrümmung, bei [mm] -1\le [/mm] x [mm] \le2 [/mm] hat der Graph eone Rechtskrümmung und bei x>2 hat der Graph wieder eine Linkskrümmung.

Ist das soweit korrekt ?? Gibt es vll. einen einfacheren Weg ??

Freue mich auf Antworten.

Vielen Dank

Exeqter

        
Bezug
Kurvenverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Sa 24.02.2007
Autor: informix

Hallo eXeQteR,

> Gegeben ist [mm]f''(x)=x^{2}-x-2[/mm]
>  
> Inwelchen bereichen macht der Graph von f eine Links- bzw.
> Rechtskurve ?
>  Hi,
>  
> also ich habe mir das folgendermaßen überlegt:
>  
> Man setzt f''(x)=0 damit erhält man die Nullstellen
> [mm]x_{1}=-1[/mm] und [mm]x_{2}=2[/mm] .
>  
> Die Nullstellen sind ja bekanntermaßen Kandidaten für einen
> Wendepunkt. Nun benutze ich das Vorzeichenwechselkriterium
> und sehe: Bei [mm]x_{1}=-1[/mm] findet ein Vorzeichenwechsel von +
> nach - statt, also geht eine Links in eine Rechtskurve
> über.
>  Bei [mm]x_{2}=2[/mm] findet ein Vorzeichenwechsel von - nach +
> statt, also geht eine Rechts in eine Linkskurve.
>
> D.h bei x<-1 ist hat der Graph von f eine Linkskrümmung,
> bei [mm]-1\le[/mm] x [mm]\le2[/mm] hat der Graph eone Rechtskrümmung und bei
> x>2 hat der Graph wieder eine Linkskrümmung.
>  
> Ist das soweit korrekt ?? Gibt es vll. einen einfacheren
> Weg ??
>  

nein, das ist genau, was man dazu überlegen muss.
[daumenhoch]

Gruß informix

Bezug
                
Bezug
Kurvenverhalten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Sa 24.02.2007
Autor: MontBlanc

huhu,

super danke =)

schönes wochenende noch!!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de