www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konvergenzmenge finden
Konvergenzmenge finden < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzmenge finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 Sa 05.08.2017
Autor: Herzblatt

Aufgabe
Bestimme die Menge in der [mm] \sum_{k\ge 0} \left( \frac{z}{z+1}\right)^k [/mm]
absolut konvergiert.


Hallo,

ich dachte hier an eine Fallunterscheidung. Wenn z>0 dann ist [mm] \frac{z}{z+1} [/mm] < 1 und mit der geometrischen Reihe konvergiert die Summe gegen z+1. Ist das bis jetzt richtig? Wie gehe ich jetzt in dem zweiten Fall (z<0)vor? Außerdem verwirrt mich der Begriff "Menge" in der Aufgabenstellung. Ist der gleich zu setzen mit der Aufgabenstellung den Konvergenzradius mit Mittelpunkt zu finden?

        
Bezug
Konvergenzmenge finden: Antwort
Status: (Antwort) fertig Status 
Datum: 01:12 Sa 05.08.2017
Autor: leduart

Hallo,
die Menge ist nach deiner Angabe das Intervall [mm] [0,\infty)\in \IR [/mm] oder [mm] \IR^+ [/mm]
falls z [mm] \in \IR, [/mm]
für komplexe Zahlen macht ja z>0 keinen Sinn. kann denn z auch komplex sein oder behandelt ihr nur reelle Folgen?
für z<0 überleg erstmal ob die Summanden eine Nullfolge bilden.
Gruß leduart

Bezug
                
Bezug
Konvergenzmenge finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:22 Sa 05.08.2017
Autor: Herzblatt


> Hallo,
> die Menge ist nach deiner Angabe das Intervall
> [mm][0,\infty)\in \IR[/mm] oder [mm]\IR^+[/mm]
>  falls z [mm]\in \IR,[/mm]
>  für komplexe Zahlen macht ja z>0 keinen
> Sinn. kann denn z auch komplex sein oder behandelt ihr nur
> reelle Folgen?

z soll sogar komplex sein. Also hast du Recht und das war wohl der Fall, dass  z=x wobei x>0 was ich da dachte. Ich könnte z auch als real und Imaginärteil darstellen aber weiß nicht ob mir das weiterhilft?

>   für z<0 überleg erstmal ob die Summanden eine Nullfolge
> bilden.

Also wenn z=x und x<0 dann kann es keine Nullfolge sein, da der Zähler immer größer ist als der Nenner....
Ich weiß immer noch nicht so recht wie ich vorangehen soll....

>  Gruß leduart


Bezug
                        
Bezug
Konvergenzmenge finden: Antwort
Status: (Antwort) fertig Status 
Datum: 08:06 Sa 05.08.2017
Autor: fred97


> > Hallo,
> > die Menge ist nach deiner Angabe das Intervall
> > [mm][0,\infty)\in \IR[/mm] oder [mm]\IR^+[/mm]
>  >  falls z [mm]\in \IR,[/mm]
>  >  für komplexe Zahlen macht ja z>0
> keinen
> > Sinn. kann denn z auch komplex sein oder behandelt ihr nur
> > reelle Folgen?
>  z soll sogar komplex sein. Also hast du Recht und das war
> wohl der Fall, dass  z=x wobei x>0 was ich da dachte. Ich
> könnte z auch als real und Imaginärteil darstellen aber
> weiß nicht ob mir das weiterhilft?
>  >   für z<0 überleg erstmal ob die Summanden eine
> Nullfolge
> > bilden.
>  Also wenn z=x und x<0 dann kann es keine Nullfolge sein,
> da der Zähler immer größer ist als der Nenner....

Ja, ja, manchmal weiss man Sachen die gar nicht stimmen.  Schau die mal die Sache mit x=-1/4 oder x= -0,12345678987897 an.


>  Ich weiß immer noch nicht so recht wie ich vorangehen
> soll....

Es müffelt nach geometrischer Reihe mit [mm] $q=\frac{z}{z+1}$, [/mm] wobei ich davon ausgehe, dass z komplex ist.

[mm] \sum_{k \ge 0}q^k [/mm] konvergiert [mm] \gdw [/mm] |q|<1 [mm] \gdw [/mm] |z|<|z+1|  [mm] \gdw |z|^2<|z+1|^2. [/mm]

Wenn Du nun für komplexes w berücksichtigst, dass $ [mm] |w|^2=w \overline{w}$ [/mm] gilt, solltest Du kommen auf

$ |z|<|z+1|  [mm] \gdw [/mm] Re(z)>-1/2$.




>  >  Gruß leduart
>  


Bezug
                                
Bezug
Konvergenzmenge finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:11 So 06.08.2017
Autor: Herzblatt


> > > Hallo,
> > > die Menge ist nach deiner Angabe das Intervall
> > > [mm][0,\infty)\in \IR[/mm] oder [mm]\IR^+[/mm]
>  >  >  falls z [mm]\in \IR,[/mm]
>  >  >  für komplexe Zahlen macht
> ja z>0
> > keinen
> > > Sinn. kann denn z auch komplex sein oder behandelt ihr nur
> > > reelle Folgen?
>  >  z soll sogar komplex sein. Also hast du Recht und das
> war
> > wohl der Fall, dass  z=x wobei x>0 was ich da dachte. Ich
> > könnte z auch als real und Imaginärteil darstellen aber
> > weiß nicht ob mir das weiterhilft?
>  >  >   für z<0 überleg erstmal ob die Summanden eine
> > Nullfolge
> > > bilden.
>  >  Also wenn z=x und x<0 dann kann es keine Nullfolge
> sein,
> > da der Zähler immer größer ist als der Nenner....
>  
> Ja, ja, manchmal weiss man Sachen die gar nicht stimmen.  
> Schau die mal die Sache mit x=-1/4 oder x=
> -0,12345678987897 an.
>  
>
> >  Ich weiß immer noch nicht so recht wie ich vorangehen

> > soll....
>  
> Es müffelt nach geometrischer Reihe mit [mm]q=\frac{z}{z+1}[/mm],
> wobei ich davon ausgehe, dass z komplex ist.
>  
> [mm]\sum_{k \ge 0}q^k[/mm] konvergiert [mm]\gdw[/mm] |q|<1 [mm]\gdw[/mm] |z|<|z+1|  
> [mm]\gdw |z|^2<|z+1|^2.[/mm]
>  
> Wenn Du nun für komplexes w berücksichtigst, dass [mm]|w|^2=w \overline{w}[/mm]
> gilt, solltest Du kommen auf
>  
> [mm]|z|<|z+1| \gdw Re(z)>-1/2[/mm].
>  
>
>
>
> >  >  Gruß leduart

> >  

>  

Ah, super, ich hab's :-) Vielen Dank für die Hilfe!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de