www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Kommutativgesetz Matrizen
Kommutativgesetz Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutativgesetz Matrizen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:31 Do 05.03.2020
Autor: makke306

Aufgabe
Zeigen Sie, dass das Kommutativgesetz der Multiplikation für 2x2 Matrizen nicht erfüllt ist. Benutzen Sie Matrizen in allgemeiner Form: [mm] \begin{Bmatrix} a & b \\ c & d \end{Bmatrix} [/mm]


Hey wie kann ich beweißen dass das Kommutativgesetz bei Matrizen nicht gilt? Brauch ich da einfach die oben genannte Matrize ausmultiplizieren?.



        
Bezug
Kommutativgesetz Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Do 05.03.2020
Autor: ChopSuey

Du weißt, wie das Produkt von Matrizen definiert ist.
Du weißt, was das Kommutativgesetz ist.

Laut Hinweis sollst du das Ganze nun am Beispiel der allg. 2x2-Matrix [mm] $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ [/mm] darstellen.

Jetzt musst du nur noch loslegen. Alles was du dafür brauchst, hab ich dir genannt.

Bezug
        
Bezug
Kommutativgesetz Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Do 05.03.2020
Autor: hase-hh

Ich vermute mal, dass du beweisen sollst, dass das Kommutativgesetz für Matrizen nicht erfüllt ist...

Das Kommutativgesetz für 2x2 Matrizen gilt nur dann, wenn für alle A, B gilt:

A*B = C   und    B*A = C  


Ein Gegenbeipsiel dürfte so eine Aussage widerlegen, wie:


A = [mm] \pmat{ 1 & 2 \\ 0& 3 } [/mm]       B = [mm] \pmat{ -2 & 4 \\ 3 & 1 } [/mm]


A*B = [mm] \pmat{ -2 & 4 \\ 3 & 1 }*\pmat{ 1 & 2 \\ 0& 3 } [/mm] =  [mm] \pmat{ -2 & 8 \\ 3 & 9 } [/mm]

B*A = [mm] \pmat{ 1 & 2 \\ 0& 3 }*\pmat{ -2 & 4 \\ 3 & 1 } [/mm]  =  [mm] \pmat{ 4 & 6 \\ 9 & 3 } [/mm]

Bezug
        
Bezug
Kommutativgesetz Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:52 Fr 06.03.2020
Autor: chrisno


> Zeigen Sie, dass das Kommutativgesetz der Multiplikation
> für 2x2 Matrizen nicht erfüllt ist. Benutzen Sie Matrizen
> in allgemeiner Form: [mm]\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}[/mm]
>  
> Hey wie kann ich beweißen dass das Kommutativgesetz bei
> Matrizen nicht gilt? Brauch ich da einfach die oben
> genannte Matrize ausmultiplizieren?.
>  

Was verstehst du unter "eine Matrix ausmultiplizieren"?

Mach das, was HJK .. geschrieben hat, aber eben nicht mit konkreten Zahlen, sondern, so wie ich die Aufgabe verstehe, mit zwei allgemeinen Matritzen.
  
[mm]\pmat{ a & b \\ c & d} \pmat{ e & f \\ g & h } = \ldots [/mm]

[mm]\pmat{ e & f \\ g & h } \pmat{ a & b \\ c & d } = \ldots [/mm]
Vergleiche dann beide Ergebnisse und erkläre, warum sie nur unter ganz bestimmten Bedingungen gleich sind, also im Allgemeinen nicht gleich sind.

Bezug
                
Bezug
Kommutativgesetz Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:22 Fr 06.03.2020
Autor: makke306

Erstmals vielen Dank für die Antworten.

Also wenn ich dann die Matrizen multipliziere erhalte ich:
[mm] \pmat{ a & b \\ c & d} \pmat{ e & f \\ g & h } [/mm] = [mm] \pmat{ ae+bg & af+bh \\ ce+dg & cf+dh} [/mm]

Und wenn ich die Matrizen vertausche erhalte ich:
[mm] \pmat{ e & f \\ g & h } \pmat{ a & b \\ c & d } [/mm] = [mm] \pmat{ ea+fc & eb+fd \\ ga+hc & gb+hd} [/mm]

Da das Ergebnis nicht gleich ist kann man sagen dass hier das Kommutativgesetz nicht gültig ist. Stimmt dies? :)

Bezug
                        
Bezug
Kommutativgesetz Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 Fr 06.03.2020
Autor: fred97


> Erstmals vielen Dank für die Antworten.
>  
> Also wenn ich dann die Matrizen multipliziere erhalte ich:
>  [mm]\pmat{ a & b \\ c & d} \pmat{ e & f \\ g & h }[/mm] = [mm]\pmat{ ae+bg & af+bh \\ ce+dg & cf+dh}[/mm]
>  
> Und wenn ich die Matrizen vertausche erhalte ich:
>  [mm]\pmat{ e & f \\ g & h } \pmat{ a & b \\ c & d }[/mm] = [mm]\pmat{ ea+fc & eb+fd \\ ga+hc & gb+hd}[/mm]
>  
> Da das Ergebnis nicht gleich ist kann man sagen dass hier
> das Kommutativgesetz nicht gültig ist. Stimmt dies? :)

Ja, Du brauchst doch nur die jeweils ersten Einträge in den beiden Produkten ansehen:

ist $bg [mm] \ne [/mm] fc$, so ist nix mit Vertauschbarkeit.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de