www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik - Dualzahlen
Kombinatorik - Dualzahlen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik - Dualzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 14.12.2011
Autor: erha06

Aufgabe
a) Wie viele zehnstellige Dualzahlen gibt es?
b) Wie viele davon haben genau drei "0"?

Hallo zusammen,

obige Aufgabe stammt aus meinem Mathebuch, ich habe also eine Lösung dazu, aber leider keine Erklärung.

a) Ist klar. 2*2*2... Möglichkeiten, also [mm] $2^{10}$ [/mm] Dualzahlen
b) Ich weiß, dass die Lösung [mm] $\binom{10}{3} [/mm] = 120$ ist. So ganz einleuchten will sie mir aber nicht... Das klassische Beispiel für die Verwendung des Binomialkoeffizienten ist ja immer Lotto. Und dieses Beispiel ist mir auch klar. Ich habe 49 unterscheidbare Kugeln, aus denen ich 6 auswähle - Reihenfolge egal.

Doch warum habe ich hier 10 "Kugeln", aus denen ich 3 auswähle? Rein intuitiv hätte ich gedacht, ich habe 2 Kugel (0 oder 1) die ich 10 mal - mit zurücklegen - ziehe...

Wäre toll, wenn mir da jemand auf die Sprünge helfen könnte...

        
Bezug
Kombinatorik - Dualzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Mi 14.12.2011
Autor: abakus


> a) Wie viele zehnstellige Dualzahlen gibt es?
>  b) Wie viele davon haben genau drei "0"?
>  Hallo zusammen,
>  
> obige Aufgabe stammt aus meinem Mathebuch, ich habe also
> eine Lösung dazu, aber leider keine Erklärung.
>  
> a) Ist klar. 2*2*2... Möglichkeiten, also [mm]2^{10}[/mm]
> Dualzahlen
>  b) Ich weiß, dass die Lösung [mm]\binom{10}{3} = 120[/mm] ist. So
> ganz einleuchten will sie mir aber nicht... Das klassische
> Beispiel für die Verwendung des Binomialkoeffizienten ist
> ja immer Lotto. Und dieses Beispiel ist mir auch klar. Ich
> habe 49 unterscheidbare Kugeln, aus denen ich 6 auswähle -
> Reihenfolge egal.
>  
> Doch warum habe ich hier 10 "Kugeln", aus denen ich 3
> auswähle? Rein intuitiv hätte ich gedacht, ich habe 2
> Kugel (0 oder 1) die ich 10 mal - mit zurücklegen -
> ziehe...

Du hast hier 10 Stellen, von denen du genau die drei Stellen auswählst, die eine 0 erhalten sollen.
Gruß Abakus

>  
> Wäre toll, wenn mir da jemand auf die Sprünge helfen
> könnte...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de