www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Idee
Status: (Frage) beantwortet Status 
Datum: 09:36 Do 19.04.2012
Autor: Nils2012

Aufgabe
Hallo allerseits,

ich bin auf der Suche nach der Formel zur Bestimmung der Anzahl der Permutationen im folgendem Fall:

Ziehen von k Elementen aus einer Menge mit n Elementen,
wobei [mm] n_1 [/mm] Elemente vom Typ1, [mm] n_2 [/mm] Elemente vom Typ2, ... und [mm] n_k [/mm] Elemente vom Typk sind und n = [mm] n_1 [/mm] + [mm] n_2 [/mm] + ... + [mm] n_k [/mm] gilt.

Kann mir irgendeiner weiterhelfen?

Vielen Dank!
Nils

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=489096


Mein Ansatz ohne Abhängigkeit von k lautet:

[mm] P_n [/mm] = n!/ [mm] (n_1!*...*n_k!) [/mm]


Mein Ansatz in Abhängigkeit von k ist folgender:

[mm] P_n [/mm] = [mm] P_n/ [/mm] (n-k)! <-- Das ist aber falsch, oder?

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Do 19.04.2012
Autor: Diophant

Hallo Nils und

[willkommenmr]

> Hallo allerseits,
>
> ich bin auf der Suche nach der Formel zur Bestimmung der
> Anzahl der Permutationen im folgendem Fall:
>
> Ziehen von k Elementen aus einer Menge mit n Elementen,
> wobei [mm]n_1[/mm] Elemente vom Typ1, [mm]n_2[/mm] Elemente vom Typ2, ...
> und [mm]n_k[/mm] Elemente vom Typk sind und n = [mm]n_1[/mm] + [mm]n_2[/mm] + ... +
> [mm]n_k[/mm] gilt.
>
> Mein Ansatz ohne Abhängigkeit von k lautet:
>
> [mm]P_n[/mm] = n!/ [mm](n_1!*...*n_k!)[/mm]
>

Das ist richtig (und ja allseits bekannt).

>
> Mein Ansatz in Abhängigkeit von k ist folgender:
>
> [mm]P_n[/mm] = [mm]P_n/[/mm] (n-k)! <-- Das ist aber falsch, oder?

Was meinst du mit in Abhängigkeit von k? Abgesehen, dass man das so nicht schreiben darf, wie du es oben getan hast (sonst folgt sofort (n-k)!=1)?

Du multiplizierst ja hier im Prinzip den Binomialkoeffizienten von n und k mit k!. Dabei kommt die Anzahl der k-Tupel heraus die sich (mit Beachtung der Reihenfolge!) aus den n Elementen bilden lassen, während der Binomialkoeffizient ja die möglichen k-Tupel ohne BEachtung der Reihenfolge zählt.

Wenn du dies gemeint hast, dann ist es natürlich auch richtig. :-)

Schreibe aber besser etwa:

[mm] P_{n;k}=\bruch{n!}{(n-k)!} [/mm]


Gruß, Diophant

Bezug
                
Bezug
Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 Do 19.04.2012
Autor: Nils2012

Hallo Diophant, mir ist eben noch ein Fehler unterlaufen:

Ziehen von k Elementen aus einer Menge mit n Elementen,
wobei [mm] n_1 [/mm] Elemente vom [mm] Typ_1, n_2 [/mm] Elemente vom [mm] Typ_2, [/mm] ... und [mm] n_j [/mm] Elemente vom [mm] Typ_j [/mm] sind und n = [mm] n_1 [/mm] + [mm] n_2 [/mm] + ... + [mm] n_j [/mm] gilt.

Meine Vermutung:
[mm] P_n [/mm] = (n!/ [mm] (n_1!*...*n_j!))/ [/mm] (n-k)!

Bsp:
n = 5
j = 3 (also 3 verschiedene Typen von Objekten)
[mm] n_1 [/mm] = 1
[mm] n_2 [/mm] = 2
[mm] n_3 [/mm] = 2

k = 2

[mm] P_n [/mm] = 5!/(2!*2!*1!)/(5-2)! = 5

Wo liegt der Fehler?

Es müssten aber in diesem Beispiel [mm] P_n [/mm] = 10 sein.

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Do 19.04.2012
Autor: Diophant

Hallo,

noch einmal gefragt: soll mit oder ohne Beachtung der Reihenfolge gezogen werden?

Deine Vermutung ist unabhängig davon falsch: in dem von dir angegebenen Experiment bekomme ich 18 Möglichkeiten bei Beachtung und 6 Möglichkeiten ohne Beachtung der Reihenfolge.


Gruß, Diophant

Bezug
                                
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Do 19.04.2012
Autor: Nils2012

Die Reihenfolge spielt eine Rolle. Hier noch einmal ein Beispiel:

ich habe eine Menge n (n=5) in einer Urne besipielsweise und ziehe k (k=2) Mal. In der Urne befinden sich j (j=3) Typen von Elementen:

[mm] n_1 [/mm] = {A}
[mm] n_2 [/mm] = {B,B}
[mm] n_3 [/mm] = {C,C}

Angenommen ich habe die Elemente A, B und C und im Beispielfall n={A,B,B,C,C} Elemente in der Urne.

Ziehe ich jetzt zwei mal bekomme ich maximal folgende Kombinationen:

P(n) = {AB,AC,BA,BB,BC,CA,CB,CC}


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de