www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geowissenschaften" - Kartesische->Baryzentr. Koordi
Kartesische->Baryzentr. Koordi < Geowissenschaften < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geowissenschaften"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kartesische->Baryzentr. Koordi: Idee
Status: (Frage) beantwortet Status 
Datum: 22:04 Do 04.08.2011
Autor: Prom08

Aufgabe
Bestimme aus gegebenen Kartesischen Koordinaten [KK] (X;Y) die zugehörigen Baryzentrischen Koordinaten [BK] (u;v;w). Die kartesischen Koordinaten der Eckpunkte des Dreiecks lauten (xa,ya),(xb,yb),(xc,yc).


Wer kann mir weiterhelfen?

Mein Ausgangspunkt ist die Transformationsgleichung um aus BK die zugehörigen KK zu errechnen.

X = [mm] \bruch{(u * xa) + (v * xb) + (w * xc)}{u + v + w} [/mm]  und   Y = [mm] \bruch{(u * ya) + (v * yb) + (w * yc)}{u + v + w} [/mm]

Gegeben sind in diesem Fall also die baryzentrische Koordinaten (u,v,w) aus denen ich den Punkt P(X,Y) errechnen kann.

Der Term (u + v + w) wird bei mir immer = 1. Kürzt sich also raus.

Diese beiden Gleichungen möchte ich nun umstellen um aus den KK des  Punktes P(X,Y) die baryzentrische Koordinaten (u,v,w) zu berechnen.
Die KK der Eckpunkte (xa,ya),(xb,yb),(xc,yc) sind bekannt.

1. Schritt: Nach u, der ersten baryzentrische Koordinaten umstellen.

u = [mm] \bruch{X - (v * xb) - (w * xc)}{xa} [/mm]   und   u = [mm] \bruch{Y - (v * yb) - (w * yc)}{ya} [/mm]

führt zu:

[mm] \bruch{X - (v * xb) - (w * xc)}{xa} [/mm] = [mm] \bruch{Y - (v * yb) - (w * yc)}{ya} [/mm]

Umstellung zu:

[mm] \bruch{ya * (X - (v * xb) - (w * xc))}{xa * (Y - (v * yb) - (w * yc))} [/mm] = 0

Und nu? Wie weiter? War mein Ansatz falsch? Habe nun die Variablen v und w die unbekannt sind und weiß nicht weiter.
Kann ich mit dem Zusammenhang u + v + w = 1 noch was anfangen? Bitte helft mir.

Schönen Abend und DANKE,
Sven

PS: Um das zu veranschaulichen nachfolgend noch eine Grafik

[Dateianhang nicht öffentlich]

Ziel ist also den orangen Punkt (2,8 ; 200) in BK umzurechnen, wobei die Eckpunkte die Koordinaten haben

Q =>(xa,ya)
S =>(xb,yb)
A =>(xc,yc)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kartesische->Baryzentr. Koordi: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Do 04.08.2011
Autor: Prom08

Herje, wenn man sich auf die deutsche Wikipedia verlässt ist man verlassen.

Die Lösung steht in der []englischen...





Bezug
        
Bezug
Kartesische->Baryzentr. Koordi: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Do 04.08.2011
Autor: MathePower

Hallo Prom08,

> Bestimme aus gegebenen Kartesischen Koordinaten [KK] (X;Y)
> die zugehörigen Baryzentrischen Koordinaten [BK] (u;v;w).
> Die kartesischen Koordinaten der Eckpunkte des Dreiecks
> lauten (xa,ya),(xb,yb),(xc,yc).
>  
> Wer kann mir weiterhelfen?
>  
> Mein Ausgangspunkt ist die Transformationsgleichung um aus
> BK die zugehörigen KK zu errechnen.
>
> X = [mm]\bruch{(u * xa) + (v * xb) + (w * xc)}{u + v + w}[/mm]  und  
>  Y = [mm]\bruch{(u * ya) + (v * yb) + (w * yc)}{u + v + w}[/mm]
>
> Gegeben sind in diesem Fall also die baryzentrische
> Koordinaten (u,v,w) aus denen ich den Punkt P(X,Y)
> errechnen kann.
>  
> Der Term (u + v + w) wird bei mir immer = 1. Kürzt sich
> also raus.
>  
> Diese beiden Gleichungen möchte ich nun umstellen um aus
> den KK des  Punktes P(X,Y) die baryzentrische Koordinaten
> (u,v,w) zu berechnen.
>  Die KK der Eckpunkte (xa,ya),(xb,yb),(xc,yc) sind
> bekannt.
>  
> 1. Schritt: Nach u, der ersten baryzentrische Koordinaten
> umstellen.
>  
> u = [mm]\bruch{X - (v * xb) - (w * xc)}{xa}[/mm]   und   u =
> [mm]\bruch{Y - (v * yb) - (w * yc)}{ya}[/mm]
>
> führt zu:
>  
> [mm]\bruch{X - (v * xb) - (w * xc)}{xa}[/mm] = [mm]\bruch{Y - (v * yb) - (w * yc)}{ya}[/mm]
>
> Umstellung zu:
>  
> [mm]\bruch{ya * (X - (v * xb) - (w * xc))}{xa * (Y - (v * yb) - (w * yc))}[/mm]
> = 0


Hier muss doch stehen:

[mm]\bruch{ya * (X - (v * xb) - (w * xc))}{xa * (Y - (v * yb) - (w * yc))}=\red{1}[/mm]

Hieraus erhältst Du dann v  in Abhängigkeit von w
bzw. w in Abhängigkeit von v.

Das setzt Du in die 2 verbliebenem Gleichungen ein:

[mm]u+v+w=1[/mm]

[mm]X=u*xa+v*xb+w*xc[/mm]

oder

[mm]u+v+w=1[/mm]

[mm]Y=u*ya+v*yb+w*yc[/mm]

ein, und löst nach den 2 verbliebenen Variablen auf.



>  
> Und nu? Wie weiter? War mein Ansatz falsch? Habe nun die
> Variablen v und w die unbekannt sind und weiß nicht
> weiter.
>  Kann ich mit dem Zusammenhang u + v + w = 1 noch was
> anfangen? Bitte helft mir.
>  
> Schönen Abend und DANKE,
>  Sven
>  
> PS: Um das zu veranschaulichen nachfolgend noch eine
> Grafik
>  
> [Dateianhang nicht öffentlich]
>  
> Ziel ist also den orangen Punkt (2,8 ; 200) in BK
> umzurechnen, wobei die Eckpunkte die Koordinaten haben
>  
> Q =>(xa,ya)
>  S =>(xb,yb)
>  A =>(xc,yc)


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geowissenschaften"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de