www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration d. Substitution
Integration d. Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration d. Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 23.11.2009
Autor: m4rio

Aufgabe
Berechnen Sie [mm] \integral_{0}^{2}{(\bruch{1}{2}+4)^3}{dx} [/mm]

Lösung:

Wir substituieren [mm] \bruch{1}{2}+4=u [/mm]

Dann ist die Ableitung [mm] \(u'=\bruch{du}{dx} \(= \bruch{1}{2} \gdw \(dx=2du [/mm]


Meine Frage... wie entsteht bitte das [mm] \(2du [/mm] ???

        
Bezug
Integration d. Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 23.11.2009
Autor: Gonozal_IX

Hiho,
> Dann ist die Ableitung [mm]\(u'=\bruch{du}{dx} \(= \bruch{1}{2} \gdw \(dx=2du[/mm]

mir fällt gerade auf: Kann es sein, dass du da ein "x" im Argument vergessen hast, soll es vlt. [mm] $\bruch{1}{2}x$ [/mm] heissen? Sonst ist es falsch.

MFG,
Gono

Bezug
                
Bezug
Integration d. Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mo 23.11.2009
Autor: m4rio

ohh, ich sehe gerade, da fehlt echt ein x...
Bezug
                        
Bezug
Integration d. Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mo 23.11.2009
Autor: Gonozal_IX

Dann ist es falsch und das Integral auch nicht schwer.

Denn:

$ [mm] \integral_{0}^{2}{(\bruch{1}{2}+4)^3}{dx} [/mm] =   [mm] \integral_{0}^{2}{4,5^3}{dx} [/mm] =  [mm] \integral_{0}^{2}91,125{dx} [/mm] = 91,125  [mm] \integral_{0}^{2}1{dx} [/mm] = 91,125 * 2 = 182,25$

Da brauch ich nix Substiuieren, und selbst wenn:

$ [mm] \bruch{1}{2}+4=u [/mm] = 4,5 $

und damit

$ [mm] \(u'=\bruch{du}{dx} \(= [/mm] 0 [mm] \not= \bruch{1}{2}$ [/mm]

Du hast garantiert irgendwo ein x vergessen.... oder die Aufgabe ;-)

MFG,
Gono


Bezug
                                
Bezug
Integration d. Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Mo 23.11.2009
Autor: m4rio

ja, habe doch ein x vergessen...


$ [mm] \integral_{0}^{2}{(\bruch{1}{2}x+4)^3}{dx} [/mm] $


$ [mm] \bruch{1}{2}x+4=u [/mm] $



$ [mm] \(u'=\bruch{du}{dx} \(= \bruch{1}{2} \gdw \(dx=2du [/mm] $


so ist sie korrekt..

Bezug
                                        
Bezug
Integration d. Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mo 23.11.2009
Autor: Sierra

Hallo,

deine ursprüngliche Frage war ja immernoch, wieso da 2u steht, richtig ?

dazu musst du doch nur umstellen, du hast

[mm] \bruch{du}{dx} [/mm] = [mm] \bruch{1}{2} [/mm]

also mal dx und mal 2:

-->  2*du=dx

für dein Integral folgt also:

[mm] \integral_{0}^{2}{2*u^{3} du} [/mm]


Gruß Sierra

Bezug
                                                
Bezug
Integration d. Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mo 23.11.2009
Autor: m4rio

hmm, meinst du

[mm] \bruch{du}{dx}=\bruch{1}{2} \(/*dx [/mm]

[mm] \(=du=\bruch{1}{2}dx\(/*2 [/mm]

[mm] \(=2du=dx [/mm]

??



Bezug
                                                        
Bezug
Integration d. Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mo 23.11.2009
Autor: Gonozal_IX

Ja, auch wenn das nicht sauber ist, weil $dx$ und $dy$ nur Symbole sind und keine Zahlen.

Aber es führt zum Ergebnis.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de