www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Signaltheorie" - Integration Dirac-Impuls
Integration Dirac-Impuls < Signaltheorie < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Dirac-Impuls: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:55 Do 31.01.2013
Autor: HansAli

Aufgabe 1
[mm] \integral_{-\infty}^{\infty}{\delta_{0}(t) dt}= [/mm] 1

Aufgabe 2
[mm] \integral_{-\infty}^{t}{\delta_{0}(t) dt}= \delta_{-1}(t) [/mm]

Aufgabe 3
[mm] \integral_{0}^{t}{\delta_{-1}(t) dt}= \delta_{-1}(t) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hoffe mal, dass meine Frage hier nicht allzu dämlich ist.
Also, wenn ich denn Dirac-Stoß von [mm] -\infty [/mm] bis [mm] \infty [/mm] integriere bleibt er 1 und wenn ich jetzt bis t integriere erhalte ich die Sprungfunktion. Ich weiß zwar, dass es so ist aber nicht warum? Vielleicht schafft es ja jemand von euch das ein wenig anschaulicher zu erklären.

Zu Aufgabe 3 da bin ich mir nicht sicher ob das überhaupt stimmt aber, das war in einer meiner Aufgaben so, dass dort die Sprungfunktion aus dem Integral herausgezogen werden konnte, da ist mir aber auch garnicht klar warum.

Danke schonmal für eure Bemühungen!

        
Bezug
Integration Dirac-Impuls: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Do 31.01.2013
Autor: scherzkrapferl


> [mm]\integral_{-\infty}^{\infty}{\delta_{0}(t) dt}=[/mm] 1
>  [mm]\integral_{-\infty}^{t}{\delta_{0}(t) dt}= \delta_{-1}(t)[/mm]
>  
> [mm]\integral_{0}^{t}{\delta_{-1}(t) dt}= \delta_{-1}(t)[/mm]
>  Ich
> habe diese Frage in keinem Forum auf anderen Internetseiten
> gestellt.
>  
> Ich hoffe mal, dass meine Frage hier nicht allzu dämlich
> ist.
> Also, wenn ich denn Dirac-Stoß von [mm]-\infty[/mm] bis [mm]\infty[/mm]
> integriere bleibt er 1 und wenn ich jetzt bis t integriere
> erhalte ich die Sprungfunktion. Ich weiß zwar, dass es so
> ist aber nicht warum? Vielleicht schafft es ja jemand von
> euch das ein wenig anschaulicher zu erklären.
>  
> Zu Aufgabe 3 da bin ich mir nicht sicher ob das überhaupt
> stimmt aber, das war in einer meiner Aufgaben so, dass dort
> die Sprungfunktion aus dem Integral herausgezogen werden
> konnte, da ist mir aber auch garnicht klar warum.
>  
> Danke schonmal für eure Bemühungen!

Hallo, rein gefühlsmäßig musstest du die integrale berechnen, und hattest nicht wie oben, die ergebnisse gegeben.

Hast du schon mal von der sogeannten "HEAVYSIDE-Funktion" gehört ?
Gefühlsmäßig würd ich genau das hier verwenden.

wenn du dir die definition der heavyside funktion ansiehst, wirst du merken, dass:

[mm] $\integral_{-\infty}^{t}{\delta(t) dt}= [/mm] H(t)$ (siehe dein 2. bsp)

Bei deinem ersten beispiel geht es (meiner meinung nach) um die bekannten delta-distributionen.. (faltungszeug, testfunktionen, usw ..) .. demnach sollte dein ergebnis stimmen.

leider bin ich grad selber etwas in eile und muss jetzt auch schon wieder in eine vorlesung .. bin mir nicht sicher ob ich dir jetzt helfen konnte, aber ein paar denkanstöße sind mir mal eingefallen. (bitte nachkontrollieren, ist doch schon wieder ne zeit her dass ich das gemacht habe ...)


Bezug
        
Bezug
Integration Dirac-Impuls: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Do 31.01.2013
Autor: chrisno

Hast Du eine Frage zu Aufgabe 1?
Zu Aufgabe 2: Den Dirac Impuls kannst Du Dir näherungsweise als schmales hohes Dreieck vorstellen, das um die Null zentriert ist. Dessen Flächeninhalt ist 1. Solange t<0 integrierst Du über die Nulllinie, das Integral ist also Null. Sobald t>0 hast Du über das Dreieck integriert. Daher ist das Integral nun 1. Weiteres Vergrößern von t ändert nichts, da der Integrand nun wieder immer Null ist.

Zu Aufgabe 3:
Das Ergebnis glaube ich nicht. Das kann daran liegen, dass ich die Notation nicht kenne. Wenn Du über Sprungfunktion integrierst, dann steht da doch [mm] $\int_0^t [/mm] 1dt$. Also kommt f(t) = t als Lösung heraus. Das die Sprungfunktion herausgezogen werden kann, kann nur für einen Spezialfall gelten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de