www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Lösen einer Gleichung
Status: (Frage) beantwortet Status 
Datum: 22:38 Mo 06.12.2010
Autor: blackkilla

Hallo zusammen

Ich hab hier diese spezielle Aufgabe:


[mm] \integral_{3}^{x}{\bruch{2t-2}{t^2-2t}dt}=ln(\bruch{2}{3}x-1) [/mm] für Werte von x mit x > 2.

Wenn ich den Integral einfach mal integriere, erhalte ich [mm] ln(t^2-2t), [/mm] wenn ich jetzt noch x und 3 einsetze und ausrechne, erhalte ich:

[mm] ln(x^2-2x)-ln3=ln\bruch{1}{3}(x^2-2x) [/mm]

Doch anscheinend ist laut der Lösung [mm] ln\bruch{1}{3}(x^2-2x)=\bruch{2}{3}x-1 [/mm]   Wie ist das möglich?

Und wie finde ich die Lösung x=3?

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mo 06.12.2010
Autor: schachuzipus

Hallo blackkilla,


> Hallo zusammen
>  
> Ich hab hier diese spezielle Aufgabe:
>  
>
> [mm]\integral_{3}^{x}{\bruch{2t-2}{t^2-2t}dt}=ln(\bruch{2}{3}x-1)[/mm]  [kopfkratz3]
> für Werte von x mit x > 2.
>  
> Wenn ich den Integral einfach mal integriere, erhalte ich
> [mm]ln(t^2-2t),[/mm] wenn ich jetzt noch x und 3 einsetze und
> ausrechne, erhalte ich:
>  
> [mm]ln(x^2-2x)-ln3=ln\bruch{1}{3}(x^2-2x)[/mm] [ok]
>  
> Doch anscheinend ist laut der Lösung
> [mm]ln\bruch{1}{3}(x^2-2x)=\bruch{2}{3}x-1[/mm]

Hää? Da fehlt rechterhand der [mm]\ln[/mm] ...

> Wie ist das möglich?

Dein Ergebnis für das Integral ist korrekt, das aus der "Lösung" sieht sehr falsch aus ...

>  
> Und wie finde ich die Lösung x=3?

Welche Lösung soll das sein?

Welche Gleichung ist denn zu lösen?

Gruß

schachuzipus


Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Mo 06.12.2010
Autor: blackkilla

In den Lösungen stehts eben ohne ln. Und auch wenn mit, wie kann es 2/3 geben?

In der Aufgabenstellung heisst es: Lösen Sie die Gleichung.....für Werte x mit x>2.



Bezug
                        
Bezug
Integral: vollständige Aufgabenstellung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Mo 06.12.2010
Autor: Loddar

Hallo blackkilla!


Da drängt sich der Verdacht auf, dass Du uns Teile der vollständigen Aufgabenstellung vorenthälst.


Gruß
Loddar


Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mo 06.12.2010
Autor: schachuzipus

Hallo nochmal,


> In den Lösungen stehts eben ohne ln. Und auch wenn mit,
> wie kann es 2/3 geben?
>  
> In der Aufgabenstellung heisst es: Lösen Sie die
> Gleichung.....für Werte x mit x>2.

Ah, verstehe!

Nun du hast die linke Seite der Gleichung (also das Integral) richtig berechnet zu [mm]\ln\left(\frac{1}{3}(x^2-2x)\right)[/mm]

Das setze nun mit der rechten Seite gleich und löse nach x auf:


[mm]\ln\left(\frac{1}{3}(x^2-2x)\right)=\ln\left(\frac{2}{3}x-1\right)[/mm]

Gruß

schachuzipus

>  
>  


Bezug
                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Mo 06.12.2010
Autor: blackkilla

Auf das muss ich erstmal kommen. :) Vielen Dank hat wunderbar geklappt. Bin auf 3 gekommen am Schluss.

Es kommt ja die Gleichung [mm] x^2-4x+3=0 [/mm] raus mit den beiden Lösungen x=1 und x=3. Jedoch ist x=3 da einzig richtig, da Bedingung x>2. :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de